

Senior Thesis Report LIFE SCIENCES BUILDING

Prepared for: Dr. Aly M. Said | Dr. Thomas Boothby | Professor Kevin Parfitt | Dr. Charles D. Cox Prepared by: Wangjae You | Structural Option April 8, 2015

ACKNOWLEDGEMENTS

PENN STATE ARCHITECTURAL ENGINEERING

Dr. Aly Said

Dr. Ryan Solnosky

Dr. Linda Hanagan

Professor Kevin Parfitt

Professor Moses Ling

INDUSTRY

Ryan Biggs | Clark Davis Engineering & Surveying P.C.

Bohlin Cywinski Jackson

FAMILY

- Byungchun You
- Youngmi Kim
- Jongjae Yoo

Jiyoon Choi

lan Yoo

FRIENDS

- Kerem Demirci
- Joe Roush
- Justine Lim
- Zach Brown

Dongwoon Han

Young Jeon

I can do all things through Christ who strengthens me. Philippians 4:13

TABLE OF CONTENTS

THESIS ABSTRACT	1
EXECUTIVE SUMMARY	2
CHAPTER 1 - BUILDING INTRODUCTION	3
1.1 BUILDING AND SITE OVERVIEW	3
1.2 STRUCTURAL OVERVIEW	4
STRUCTURAL SYSTEM SUMMARY	4
FOUNDATION SYSTEM	4
BUILDING MATERIALS	5
GRAVITY SYSTEM	6
FLOOR SYSTEM OVERVIEW	6
LABORATORY FLOOR VIBRATION DESIGN CRITERIA	6
ROOF SYSTEM	7
LATERAL SYSTEM	8
DETERMINATION OF DESIGN LOAD	9
NATIONAL CODE FOR LIVE LOAD AND LATERAL LOADS	9
GRAVITY LOADS	9
SNOW LOADS	9
RAIN LOADS	9
LATERAL LOADS	9
1.3 DESIGN CODES AND STANDARDS	10
CODES AND STANDARDS	10
1.4 THESIS PROPOSAL	11
DESIGN SCENARIO	11
PROBLEM STATEMENT	11
PROPOSED SOLUTION	12
BREADTH STUDIES	13
BREADTH - CONSTRUCTION MANAGEMENT	13
BREADTH - BUILDING ENVELOPE	13
MASTER OF ARCHITECTURAL ENGINEERING REQUIREMENTS	13
2.1 LATERAL FORCE RESISTING SYSTEM REDESIGN OVERVIEW	14

2.2 ECCENTRICALLY BRACED FRAMES DESIGN	19
DESIGN CONSIDERATION	19
MODELING PROCESS AND CONSIDERATIONS	20
ASSUMPTIONS	20
LAYOUT OF ECCENTRICALLY BRACED FRAMES - NORTH WING	22
WIND LOAD ANALYSIS	23
WIND LOAD BASE SHEAR AND OVERTURNING	23
SEISMIC LOAD ANALYSIS	24
SEISMIC BASE SHEAR AND OVERTURNING	24
STORY DRIFT COMPARISON	25
DESIGN PROCESS OF ECCENTRICALLY BRACED FRAME	27
DETAILED CONNECTION DESIGN	28
LINK DESIGN	29
BEAM DESIGN	29
BRACE DESIGN	30
COLUMN DESIGN	30
2.3 SPECIAL MOMENT FRAME DESIGN	31
DESIGN CONSIDERATION	31
MODELING PROCESS AND CONSIDERATIONS	33
ASSUMPTIONS	33
LAYOUT OF MOMENT FRAMES - NORTH WING	34
WIND LOAD ANALYSIS	35
WIND LOAD BASE SHEAR AND OVERTURNING	35
SEISMIC LOAD ANALYSIS	36
SEISMIC BASE SHEAR AND OVERTURNING	36
STORY DRIFT COMPARISON	37
DESIGN PROCESS OF SPECIAL MOMENT FRAME	39
REDUCED BEAM SECTION AND CONNECTION DESIGN	40
CHAPTER 3 - BUILDING ENCLOSURE BREADTH	41
CHAPTER 4 - CONSTRUCTION BREADTH	43
CONCLUSION	45
REFERENCES	46

APPENDICES	47
2.2 ECCENTRICALLY BRACED FRAME	47
WIND LOAD STORY DRIFT COMPARISON	47
ECCENTRICALLY BRACED FRAME DESIGN	48
SUGGESTED LAYOUT OF ECCENTRICALLY BRACED FRAMES - EAST WING	49
2.3 SPECIAL MOMENT FARME	61
SPECIAL MOMENT DESIGN	61
3.0 BUILDING ENCLOSURE BREADTH	62
EXTERIOR TEMPERATURE AND RELATIVE HUMIDITY GRAPH	70
WATER CONTENTS FOR INDIVIDUAL MATERIALS	70
4.0 CONSTRUCTION BREADTH	71
ECCENTRICALLY BRACED FRAME	73
SPECIAL MOMENT FRAME	74
PROJECT DURATION CALCULATION	75

LIFE SCIENCES BUILDING EAST COAST, USA

wangjae you structural

General Information

Full Height: 91 ft Number of Stories: 5 stories Size: 174,500 square-foot Cost: \$91.6 million Date of Construction: September 2008 - August 2011 Project Delivery Method: Design-bid-build

Project Team

Sustainability Features

Project Sponsor:	Rvan-Biggs Associates, P.C.
Sustainability:	Atelier Ten
MEP/Lighting:	vanZelm Heywood & Shadford, Inc.
Structural:	Ryan-Biggs Associates, P.C.
Construction	Bond Brothers, Inc.
Architect:	Bohlin C yw inski Jackson
Owner:	Education Institutes

Architecture

The main concept of design in floor plan is to promote the interaction of idea and technique between researchers using the building. To place laboratories in the first floor provides easy accessibility to whom uses this building.

Structural Systems

Foundation: Cast-in-place concrete spread and strip footings

Framing: Structural Steel Frame with composite concrete slabs on metal deck

Lateral: Structural Steel Braced Frames

Mechanical

Hight-Performance Enthalpy Heat-Recovery Wheels Dedicated Outdoor Air System Chilled Beams throughout all laboratories Active Air Quality Monitoring for Airflow Reset Condenser Water Domestic Hot Water Heating

Lighting/Electrical

Two 480/277 3-Phase, 4 wire switchboards Daylight Dimming throughout the building High Level of Lighting Control with Occupancy Sensor

This building is certified as a LEED Platinum. Greenhouse on

the roof improves building performance in energy throughout

contact | wvy5021@psu.edu website | https://www.engr.psu.edu/ae/thesis/portfolios/2015/wvy5021/index.html

EXECUTIVE SUMMARY

The Life Sciences Building is located in north east United States. The building is a five stories and 174,500 square feet. The geometry of building is L-shaped and considered a long-span structure. A greenhouse is located on the roof to serve as a research space. The foundation system consists of cast-in-place concrete spread and strip footings that support a system of wide flange steel columns. The building is designed as a composite steel floor system. The lateral system is designed as a structural steel braced frames, not seismically detailed. Hollow structural section steel (HSS) is used as braces with varying thicknesses based on the lateral loads resisting the members.

The existing structural system of the Life Sciences Building is adequate to meet both strength and serviceability requirements. Therefore, a scenario has been proposed that in which a college campus, which resides in a high seismic area, specifically in San Francisco, California, requests the design and construction of a building identical to the Life Sciences Building. San Francisco, California is classified as seismic design category D.

The structural depth consists of the redesigns of two different lateral force resisting systems: eccentrically braced frames and special moment frames. ETABS 2013 is used to design and analyze the proposed systems. To reduce the effective building weight, normal weight concrete slab is changed to lightweight concrete slab on the composite deck.

Two breadth topics are investigated: building enclosure breadth and construction breadth. In order to suggest an adequate lateral system to the owner, the cost estimate and the construction schedule will be compared between suggested lateral systems. Since the building has been relocated to San Francisco, CA, the building envelope will be reassessed to the new environment and redesigned as well. Compared to the climate in the existing location, climate in San Francisco, CA is less fluctuating and remained between 50 to 70F. The building envelope, especially wall assembly details is evaluated with WUFI 5. This analysis provides the presence of water condensation between wall assembly section.

Both eccentrically braced frames and special moment frames provide distinctive difference. Eccentrically braced frames would provide better performance over the moment frames. On the other hands, special moment frames would allow architectural freedom in designing. After investigation, the owner would choose the final design of lateral force resisting system based on the performance, architectural freedom, and constructibility.

CHAPTER 1 - BUILDING INTRODUCTION

1.1 BUILDING AND SITE OVERVIEW

The Life Sciences building is a five story laboratory building, 91 feet tall and 174,500 square feet. It is located in a college town in northeast, the United States. It was constructed between September 2008 and August 2011. The total project cost was \$91.6 million, and its structural system costs \$20 million. The project team's main goal was to create a building that is both aesthetically pleasing and high-functional.

The building accommodates a 4,000 square feet nuclear magnetic resonance suite, eight classroom laboratories, a 200 seat auditorium, two 80 seat and two 30 seat classrooms, and 30 teaching and research laboratories with the offices. The building is divided in to three sections: west, north, and east. Each section is clearly distinguished by its own functions. A 200 seat auditorium is placed in west side. Greenhouse and most laboratories are placed in north side. The offices and laboratories are located on the East side.

The main concept of design in the floor plan was to create the space promoting the interaction of ideas and techniques between people using this building. Laboratories are placed in the first floor to provide better accessibility to whom uses the facilities. One of the unique feature of the project is to place greenhouse on the roof top. The greenhouse could improve building performance in energy usage in both

Figure 1 | Building Perspective from North

Figure 2 | Buildings Site Plan

summer and winter. However, in order to place greenhouse on the roof top, the structural engineer will have to design the roof to resist heavier loads.

With great effort and teamwork between project teams, the project was completed on schedule and within the project budget when faculty and researchers moved in on August 2011. This project was awarded a Leadership of Energy and Environmental Design (LEED) Platinum and has been considered as a national model of sustainable design for laboratories buildings.

1.2 STRUCTURAL OVERVIEW

STRUCTURAL SYSTEM SUMMARY

The Life Sciences Building is a structural steel frame with composite concrete slabs on metal deck. These structural frames are supported by cast-in-place concrete footings. Due to the activities in the laboratory, floor vibrations were strictly limited where vibration sensitive equipment was placed. Castin-place reinforced concrete framing was used for this building since the rigidity and mass of the concrete framing naturally limits floor vibrations. In the greenhouse on the roof, a separate concrete topping slab is placed over the structural concrete floor slab at the floor.

Structural steel may provide the benefits of a shorter erection time in construction schedule, especially during harsh winter weather which is common where the project is located.

Structural steel braced frames are used to resist lateral loads such as wind and seismic loads and are compliant to the International Building Code 2006 edition. Braced frames are used over moment frames due to its economy, and the location and configuration of the braced frame are determined carefully without any interference of the architectural and mechanical systems. The design of laboratory buildings typically requires better performance in mechanical, electrical, and plumbing system. Especially in the project, the layout of structural elements is important.

FOUNDATION SYSTEM

According to the geotechnical report prepared from Haley & Aldrich, Inc., foundation design and construction must conform to the applicable provisions of the International Building Code 2000 (IBC 2000).

The design recommends that, "Building walls and columns and other structural elements be supported on reinforced concrete spread or strip footings bearing directly on a minimum of 2 ft thickness of compacted structural fill placed above the glaciolacustrine silt deposits." The report also recommends that footings should have a least lateral dimension of 24 in or greater.

According to the geotechnical report, presumptive net soil bearing pressure = 2,500 psi on minimum 2-foot thick compacted structural fill. Concrete slab on grade varies on the rage from 5" to 1'-6" thick depend on the soil properties on geotechnical report.

Figure 3 | Greenhouse Section | 1/A4.20

Figure 4 | Section of Typical Interior Footing | 4/S3.02

BUILDING MATERIALS

Structural and M	iscellaneous Steel
Rolled Steel W Shapes	ASTM A 992
Rolled Steel C, S, M, MC, and HP Shapes	ASTM A 36
Rolled Steel Plates, Bars, and Angles	ASTM A 36
Hollow Structural Sections (HSS)	ASTM 500 - Grade B or C
Pipe	ASTM A 53 - Type E or S - Grade B
Reinforcing Steel for Concrete and Masonry	ASTM C 615 - Grade 60
** For connection, provide higher grade as required for capacity.	
Con	crete
Footings	f'c = 3,000 psi
Interior Slabs on Grade	f'c = 3,500 psi
Slabs on Deck	f'c = 3,500 psi
Foundation Walls	f'c = 4,000 psi
Retaining Walls	f'c = 4,000 psi
Piers	f'c = 4,000 psi
Grade Beams	f'c = 4,000 psi
Exterior Slabs	f'c = 4,500 psi
Exterior Equipment Pads	f'c = 4,500 psi
Miscellaneous	f'c = 3,000 psi
Piers	f'c = 4,000 psi
Grade Beams	f'c = 4,000 psi
Exterior Slabs	f'c = 4,500 psi
Mas	sonry
Concrete Block	ASTM C 90 Average Net Compressive Strength = 2,800 psi
Mortal	ASTM C 27 - TYPE S
Unit Masonry	ASTM C 90 CMU (2,800 psi) Types S Mortar - f'm = 2,000 psi
Grout	ASTM C 476 Compressive Strength = 2,500 psi 8 to 10 inch slump
Brick	ASTM C 216 - Type FBS - Grade SW

GRAVITY SYSTEM

Floor System Overview

The main floor system design is a structural steel framing with composite concrete slab on metal deck. Major members of the beam supporting the floor system are W18x35 and W16x26.

For a typical floor system, 7 1/2" concrete slab on 3" 20gage galvanized composite metal deck supports the floors and floor slab are reinforced with #4 rebar at 16" o.c. each way. Maximum live load deflection of composite section shall be 1/360 of clear span. In addition to composite metal deck, at greenhouse area, 4" lightweight concrete overlay slab is placed on rigid insulation on 3" cellular concrete slab, reinforced with #4 bar, epoxy coated, at 16" o.c. each way. All of main structural columns in Life Sciences Building are wide flange steel members. The size of columns is varying from W10x49 to W12x136. Most of the columns have a 12" depth vary in weight. W12x120 and W12x72 are used mostly in this building.

Laboratory Floor Vibration Design Criteria

Since this building is a laboratory building, there is a strict floor vibration design criteria. Vibrational velocity should be less than or equal to 3,000 micro-inch/second. Exciting force for vibrational velocity should be idealized footstep pulse of a 185 pound person walking at 75 step/minute, which is classified as moderate walk.

Roof System

Structural steel framing is used as the main roof framing system. A unique feature of the roof in Life Sciences Building is a 6,400 square foot greenhouse on north section and a green roof on west section. A green roof and greenhouse improve building performance in energy, especially in harsh winter in the location.

The greenhouse has metal truss framing system, Figure 6, and a green roof is supported on 6 1/2" concrete slab on 3" 20 gauge galvanized composite deck.

3" 20 gauge Type NS galvanized metal roof deck is used in north section. 3" metal deck is supported by W16x26 beams and W27x84 girders. W12x120 and W12x53 columns are supporting beams and girders

Figure 7 | Roof Framing Plan - North Section | S2.5b

LATERAL SYSTEM

The lateral force resisting system for Life Sciences Building consists of structural steel braced frames. There are sixteen braced frames of varying length and height. Majority of braces used hollow structural section (HSS) 10x10s1/2 and 10x10x3/8. The braced frames are not specially designed for seismic loads. The Figure 8 below shows the location of braced frames throughout Life Sciences Building.

Beams and braces are pin connection and the columns are continuous throughout the heights The major advantage of concentrically braced frames is high elastic stiffness. However, it reduces architectural versatility of the floor plan.

DETERMINATION OF DESIGN LOAD

National Code for Live Load and Lateral Loads

Live Load - ASCE 7-05 Chapter 4 Snow Load - ASCE 7-05 Chapter 7 Wind Load - ASCE 7-05 Chapter 6 Seismic Load - ASCE 7-05 Chapter 12 - Equivalent Lateral Force Procedure

Gravity Loads

Dead Loads

Due to the greenhouse design on the roof and its function as laboratory, dead loads are higher than a typical laboratory. The greenhouse floor load is 160 psf and other floors are at 110 psf. Roof dead loads are also higher than a typical project, 170 psf for roof gardens and terraces and 30 psf for regular roof.

Live loads

Live loads are referenced using ASCE 7-05 Chapter 4. Live loads reduction in applied when floor live loads are less than or equal to 100 psf.

Snow Loads

According to ASCE 7-05, ground snow in the location of the building is 65 psf.

Rain loads

Rain Loads is 50 psf referencing ASCE 7-05 Chapter 8.

Lateral Loads

Wind loads

Wind loads are calculated based on ASCE 7-05 Chapter 6. Basic wind speed (3 second gust) is 90 mph. Mean roof heigh is measure 80 feet.

Seismic loads

Seismic design category of the building is classified as B. Equivalent lateral force procedure is used as the analysis procedure in accordance of ASCE 7-05 Chapter 12. Seismic design base shear is calculated as 2,174 kips.

1.3 DESIGN CODES AND STANDARDS

CODES AND STANDARDS

International Code Council

International Code Council 2006 Editions International Building Code 2000 Edition

American Society of Civil Engineering

ASCE 7-05 - Minimum Design Loads of Buildings and Other Structures ASCE 7-10 - Minimum Design Loads of Buildings and Other Structures

American Concrete Institute

ACI 318-11 - Building Code Requirements for Structural Concrete

American Institute of Steel Construction

AISC Steel Construction Manual 14th Edition AISC Seismic Design Manual 2nd Edition

Reinforced Concrete Mechanics & Design 6th Edition by Wight and MacGregor

Vulcraft Deck Catalog

Construction Documents and Specifications of the Project

New York State Department of Transportation NYSDOT - Standard Specification for Construction and Materials

1.4 THESIS PROPOSAL

DESIGN SCENARIO

Problem Statement

The Life Sciences Building utilizes a composite steel framing system and the lateral system uses structural steel braced frames. Based on the previous analysis through technical reports, the existing gravity and lateral system for the Life Sciences Building are sufficient to meet both strength and serviceability requirements.

Since no significant challenges were found in the existing structural system, a scenario has been created in which a college campus, which resides in a high seismic area, specifically in San Francisco, CA, requests the design and construction of a building identical to the Life Sciences Building. The surrounding environment will be assumed to be identical to the current building site. However, in this new location, the soil characteristics, seismological characteristics, and climate conditions will differ significantly from the building's existing location.

As a result, in new building structural system, especially lateral forces resisting system will need to be checked and likely redesigned. In order to change the climate condition in the building, building envelope will be reassessed to the new environment and redesigned as well.

PROPOSED SOLUTION

Since a hypothetical scenario has been created in the problem statement, a fictitious data of the building is used for the design scenario. However, in order to get more detail analysis, it would be attempted to find the actual data related to geotechnical report.

In order to relocate the building, a building will be analyzed for new loads, and additional codes will be reviewed in new site location. The current state code, 2013 California Building Code, references *the International Building Code 2012 edition* and *American Society of Civil Engineers (ASCE) 7-10*.

The redesign of the lateral system will affect the gravity system, and a structural steel framing with composite concrete slabs on metal deck will be kept for new design. Structural braced frames will be considered as a prior design based seismic loads. However, the change of lateral systems will affect the gravity system and the configuration of lateral system will be carefully chosen due to architectural layout.

To resist the new loads, the floor system will be redesigned with the least amount of weight since the seismic load is based on the building weight. The reduction of the building weight will be benefit to design the lateral system. Compared to normal weight concrete, the lightweight concrete slab will be considered as floor system redesign, and it will affect the floor fire proofing system.

In redesign of lateral system, several designs will be suggested to the owner such as structural steel braced frames and structural steel moment frames. A high ductility system will provide the cost saving by reducing member size, but increasing extra costs in the connection details.

BREADTH STUDIES

Breadth - Construction Management

A comparative cost analysis will be performed in which the cost of the lateral system will be compared to see the advantages and disadvantages between different lateral system designs. The cost analysis will include materials and labor. The final design in gravity and lateral system will be chosen for the owner in order to achieve economical benefit and its performance between the lateral systems.

Breadth - Building Envelope

Due to the relocation of building from heating dominant to cooling dominant region, the building envelope will be investigated for the new location. The heat transfer through the envelope will be investigated based on the climate condition of the site and redesigned for new location.

MASTER OF ARCHITECTURAL ENGINEERING REQUIREMENTS

AE 530: Computer Modeling of Building Structures has provided fundamental theory of computer modeling process and the technical knowledge to model to structure of the Life Sciences Building and redesign the building in new location. Computer modeling software such as ETABS and RAM Structure will be used to analyze the existing structural system of the building and new structural system in a seismic region.

AE 534: Analysis and Design of Steel Connections has provided the foundation of understanding for the steel connections. Incorporated with the materials covered in this course, the seismic detailed connection will be designed.

AE 538: Earthquake Resistant Design of Buildings has provided a background for structural dynamics and structural behaviors in the event of earthquake. It will provide the fundamental understanding of seismic design of the building.

AE 542: Building Enclosure Science and Design has provided the understanding of the science in building envelope. It will help to evaluate the existing envelope design to see whether the existing design would be appropriate to the new environment. The redesign of envelope will also be considered.

CHAPTER 2 - STRUCTURAL DEPTH 2.1 LATERAL FORCE RESISTING SYSTEM REDESIGN OVERVIEW

For educational purpose, a scenario is developed that the project identical to the Life Sciences Building is proposed to construct in San Francisco, California. Compared to east coast where the existing building is located, structural design of the building is primarily focused on the seismic load instead of wind loads.

Figure 9 | New Project Location

The existing building has a structural steel braced frame as a lateral system and the lateral system is not seismically designed and detailed. The existing project location is considered as seismic design category B, which is a low to moderate vulnerability to the building structures.

	Existing Building Location East Coast, USA	New Location San Francisco, CA
Site Class	D	D
Seismic Design Category	В	D
Short Period Design Acceleration SDS	0.32	1.0
One-Second Period Design Period, S _{D1}	0.13	0.6

Table 1 | ASCE 7-10 Table 12.2-1

However, due to the relocation of the building into a high seismic region, the structural system is required to adjust to resist a high seismic load in San Francisco, CA, especially in the lateral load resisting system. San Francisco, California, especially where the project is going to be relocated, is considered as seismic design category D and it is considered as a high vulnerability to the building structures.

According to AISC Seismic Design Manual, 'Seismic force resisting systems are classified in to three levels of inelastic response capability, designated as ordinary, intermediate or special, depending on the level of ductility that the system is expected to provide.' There are many types of lateral load resisting systems with seismic detailed. However, the existing structure is designed as a structural composite steel and the braced frames are already designed and placed according to the architecture. To minimize modification in architecture without change the materials of the lateral system, in this report, two alternative lateral load resisting systems are proposed: eccentrically braced frame and special moment frame.

Both eccentrically braced frame and special moment frame provide the response modification coefficient, R, of 8, compared to R = 3 for the existing braced frame system. Since the system with higher R value provide more ductile behavior to the building structure, the base shear of the building is reduced by the factor of R. This would provide the advantage to the building structure, but will require the larger member section to use its plastic behavior as well as elastic behavior.

	Existing System	Eccentrically Braced Frame	Special Moment Frame	Concrete Shear Wall
Response Modification Coefficient, R	3	8	8	6
Overstrength Factor, $\Omega 0$	3	2	3	2 1/2
Deflection Amplification, Cd	3	4	5 1/2	5

Table 2 | ASCE 7-10 Table 12.2-1

The existing floor system is a structural steel framing with normal weight concrete (NWC) slab on composite deck. The thickness of the slab is varied depend on the occupancy of the space, but mostly 7-1/2 inches thick concrete slabs. However, the building weight is critical to seismic force resisting system. According to *ASCE 7-10* 12. 8. 1, the seismic base shear force is determined proportional to the effective seismic weight of the building. According to *ASCE 7-10* 12. 7. 2, the effective seismic weight of a structure includes several factors: dead load, 25 percent of live load in a storage areas, partition loads, permanent equipment, and 20 percent of snow loads.

Seismic Base Shear, V

```
V = C_s W (ASCE 7-10 12.8-1)
```

Where

$$\label{eq:cs} \begin{split} C_s &= the \; seismic \; response \; coefficient \\ W &= the \; effective \; seismic \; weight \end{split}$$

In order to reduce the weight of the building, lightweight concrete (LWC) slab is proposed with the appropriate thickness to achieve strength and fire protection requirements compared to original design. Table ## below provides the comparison of composite decks between normal weight and lightweight concrete slab. The comparison of strength in composite deck is evaluated based on *Vulcraft Steel Roof & Floor Deck*. Using lightweight concrete slab on composite deck with thinner slabs will expect the modification of gravity design with thinner steel member sizes.

	NWC Slab	LWC Slab	NWC Slab	LWC Slab
Slab Thickness	7 1/2" Slab	6 1/4" Slab	6 1/2" Slab	5 1/2" Slab
Decking	3VLI20	3VLI16	3VLI20	3VLI18
Clear Span	8 ft	8 ft	8 ft	8 ft
Strength	333 psf	374 psf	274 psf	278 psf

Table 3 | Composite Deck Comparison: NWC vs. LWC

In the existing design, braced frames in the penthouse are designed to serve the lateral forces within the penthouse only and the lateral loads were transferred by the transfer girders in the fourth floor. Due to the continuity of vertical stiffness, there are several modifications made in architectural layout of the building. The columns on the grid line L8.3 are moved to the grid line M due to the vertical continuity of lateral stiffness. This will allow braced frames to support the lateral system in the full building height.

Part of the requirements for Master of Architectural Engineering, three-dimensional structural analysis is performed. Among many different computer analysis software, ETABS 2013 is chosen to use for redesign and analysis of new project with student's capability of knowledge. Due to *ASCE 7-10* Section 12.2 structural system selection, in

seismic design category D (SDC D), steel eccentrically braced frames is permitted where the structural height of the building is limited to 160 ft and steel special moment frames is not limited to the structural height. *ASCE 7-10* Table 12.6-1 provides permitted analytical procedures depends on its structural characteristics and seismic design category. Since the new location is classified as seismic design category D and structural heights of 91 ft, modal response spectrum analysis is appropriate to perform and it also accounts the building's structural irregularity.

For an appropriate and detailed analysis of the lateral system, the design of the diaphragm should be selected based on its behavior. There are three classifications of diaphragms: rigid, semi-rigid, flexible. Reinforced concrete slabs often treated as rigid because of the relative stiffness between beams and columns, and slabs. In most of design, the composite steel deck is also assumed as a rigid diaphragm since the stiffness of concrete slab and decking is much stiffer than the structural steel beams and columns. Shear studs between the deck and the beams and girders transfer lateral loads directly to the beams and columns. One of the most import roles of diaphragms is to transfer lateral inertial forces to vertical elements of the seismic force-resisting system.

Figure 11 | The Role of Diaphragm | NEHRP Seismic Design Technical Brief No. 5

In the modeling process of seismic design, it is experienced that structure with rigid diaphragm and one with semirigid diaphragm provide significant difference of behaviors in diaphragm. In rigid diaphragm, the axial forces in the beams is not observed. The rigid diaphragm provides the infinite in-plane stiffness and it prevent the in-plane shear deformations. However, in seismic force resisting system, the axial forces in the beams should be considered.

To account the axial forces in the beams, the diaphragm should be modeled as a semi-rigid. According to *NEHRP Seismic Design Technical Brief No. 5*, in seismic design of the composite steel deck and concrete-filled diaphragms, diaphragms are always permitted to be treated as a semi-rigid. In ETABS 2013, the semi-rigid diaphragm stimulates in-plane stiffness. The rigid diaphragm provides similar behavior of a semi-rigid diaphragm and this will let the analysis run faster since it does not account shear deformation in diaphragm.

Since North Wing and East Wing are separated structurally by expansion joints, it is allowed to treat both wings as the complete separated structures. In this report, only North Wings is analyzed due to its structural irregularity and complexity. Compared to North Wings, the geometry of the building structure in East Wing is much simpler and architectural layout of each floor is similar through the building. Although the actual design of structure is not developed by the student, the new layout of lateral force resisting system is suggested to both two new designs.

It is recommended that for seismic design category D, E, and F, the designers may perform modal response spectrum analysis or time-history analysis to get more approximate results. For the purpose of learning the difference between linear and non-linear analysis, both equivalent lateral force analysis and modal response spectrum analysis are performed and compared.

According to ASCE 7-10 12. 9. 1, the analysis shall include a sufficient number of modes to obtain a combined modal mass participation of at least 90 percent of the actual mass in each of the orthogonal horizontal directions of response considered by the modal. In both designs, sufficient number of modes are provided to obtain the modal mass participation of at least 90 percent of the actual mass.

ASCE 7-10 12. 9. 2, it is required that the ground acceleration need to be scaled in order to perform the appropriate modal response spectrum analysis. The value related to story drift, support forces, and individual member forces for each mode of response shall be divided by the quantity R/I_e and the value for displacement and drift quantities shall be multiplied by the quantity C_d/I_e . In ETABS, the ground acceleration is divided by appropriate R/I_e . If the ratio of modal response spectrum to static analysis is less than 0.85, the ground acceleration for modal response spectrum analysis is multiplied by (I_e/R)*0.85(modal response/static analysis) and apply to each directions separately.

2.2 ECCENTRICALLY BRACED FRAMES DESIGN

DESIGN CONSIDERATION

Eccentrically braced frame is a hybrid system of concentrically braced frame and moment frame. It performs the lateral stiffness of concentrically braced frame and the ductility of moment frame. In *AISC Seismic Provisions*, eccentrically braced frame is described that braced frames for which one end of each brace intersects a beam at an eccentricity from the intersection of the centerlines of the beam and an adjacent brace of column, forming a link that is subject to shear and flexure.

The design of a link in the eccentrically braced frame is critical in its behavior of resisting lateral loads. The link provides significant inelastic deformation capacity through shear or flexural yielding. In the graphs provided, when eccentricity is approaching toward zero, the eccentrically braced frame would behave with higher stiffness as a concentrically braced frame. On the other hands, when eccentricity is becoming a full length of the beam, it would perform as a moment frame with the ductile behavior.

Figure 12 | Frame stiffness versus link length (Engelhardt and Popov, 1989)

The layout of lateral force resisting system is chosen carefully due to the architecture of the building. However, eccentrically braced frames often provide the advantage to architectural layout where concentrically braced frame cannot be located due to the space limitations by doors and windows. Due to a higher response modification coefficient, R=8, the project costs would be saved in construction of diaphragm and foundation by reducing the base shear force.

In preliminary designing, the existing concentrically braced frames without seismic detailed were modified their configurations of braces to eccentrically braced frames. The existing braced frames were placed carefully by the

designer. It was a challenge to modify the configuration of the braces and to place additional braced frame without interfering the existing architecture. To consider a continuous load path and vertical stiffness of lateral force resisting system, single diagonal braces and double braces such as V shaped or inverted V sharped bracing were used in a few bays. Since architectural design of the building has been completed already, it is hard to manipulate architectural features by the student.

Compared to the concentrically braced frames, the stiffness of eccentrically braced frames is more complicated to analyze by hand, especially in estimating the link segment. Based on the research done by Paul W. Richards, the stiffness of eccentrically braced frames is estimated by its geometry.

The Stiffness k of an EBF story

 $k = 1.35V_{design}(E/F_y)/[0.72(1.19-0.0023L_d)(L_d^2/a) + (0.13La/h) + (1.71he/L) + (0.21eh/d)]$

 $\begin{array}{l} V_{design} = design \ story \ shear \\ F_y = beam \ yielding \ stress \\ E = elastic \ modulus \ of \ steel \\ d = beam \ depth \\ Ld, \ a, \ h, \ and \ e = frame \ dimensions \end{array}$

Figure 13 | Estimating the stiffness of EBF | Paul W. Richards

However, this estimating method is only valid when frame geometries are identical for all frames in a given heights and the design shear should be at least 200 kips when shear yielding links are used. In the report, the estimating method by Paul W. Richards is used to find the relative stiffness of the frames.

MODELING PROCESS AND CONSIDERATIONS

Assumptions

Modeling for the design and analysis of eccentrically braced frames is done by ETABS 2013 based on student's knowledge. To fulfill the graduation requirement of Master of Architectural Engineering, 3D modeling has been performed to analyze the lateral system redesign. The modeling of ETABS 2013 is mainly focused on the lateral force resisting system design. However, the software still provide the composite steel frame design to get the preliminary design of gravity system if necessary. The following assumptions were made during the modeling process:

- Steel frame design and composite beam design are performed to have preliminary design.
 - In steel frame design which is a built in function of ETABS 2013, the seismic detail analysis is ignored since there is a bug on ETABS 2013.
- The building base is designed as a pinned connection for both gravity and lateral frames.
- Connection details
 - Beam-to-column connection is assumed to be fully restrained and the joints are considered as fixed. Standard moment connection detail is applied in ETABS 2013.

- Brace-to-beam connection with link is assumed to be fully restrained to transferred the shear and flexural loads. The other side of braces connecting to beam and column without link is connected as a pinned.
- Design Loads
 - Self-weight factor is applied to dead load case and it is accounted as the weight of the building for seismic design.
 - Snow load shall be accounted for the effective seismic weight in seismic design. However, compared to the existing project site, snow load is neglected in San Francisco.
 - The exterior wall load is applied as a linear load on the perimeter beams to account the dead load from exterior walls.
 - Lightweight overlay concrete slab in the greenhouse is applied as a surface load in form of dead load.
- Diaphragm
 - To account the collector forces and axial forces on the beam in eccentrically braced frames, the diaphragm is modeled as a semi-rigid instead of rigid.

Figure 14 | ETABS 3D Model for Eccentrically Braced Frame

LAYOUT OF ECCENTRICALLY BRACED FRAMES - NORTH WING

Figure ## provides the layout of eccentrically braced frames. The original layout of concentrically braced frames was considered to be kept. To increase the lateral stiffness and strength, two additional braced frame is designed. To maintain vertical stiffness continuity, penthouse grid line is moved to match with the main grid line and this is explained on '2.1 Lateral Force Resisting System Redesign Overview.' Frames highlighted in green are added in the new location whereas frames highlighted in pink are placed in the original design location of braced frames.

Figure 15 | Eccentrically Braced Frame Layout | S2.1a&b

WIND LOAD ANALYSIS

The specific drift value is provided with the table in the appendix. Since this report is more focused on the seismic design of lateral force resisting system in a high seismic region, the wind load is less considered and the drift comparison shows that the drift for wind load is relatively small compared to seismic load drift,

Wind Load Base Shear and Overturning

	Fx (kips)	Fy (kips)	Overturning (ft-kips)
Wind Case 1	291.741		13101.4581
		551.536	25868.3383
Wind Case 2	218.806		9826.0936
		413.652	19401.2701

Table 4 | Wind Load Base Shear and Overturning

SEISMIC LOAD ANALYSIS

Seismic Base Shear and Overturning

Level	hx (ft)	Mass (In-s²/ft)	Weights, W (kips)	W*hx	C _{vx}	Story Forces, F _i (kips)	Story Shear, V _i (kips)
Penthouse Roof	85.00	5805.50	186.76	15874.85	0.05	63.75	63.75
4th Floor	61.00	46854.65	1507.31	91946.16	0.28	369.24	432.99
3rd Floor	46.33	67967.05	2186.50	101300.54	0.31	406.81	839.80
2nd Floor	31.67	71782.77	2309.25	73134.00	0.23	293.69	1133.49
1st Floor	17.00	49909.19	1605.58	27294.84	0.08	109.61	1243.11
Auditorium	13.50	31467.36	1012.30	13666.12	0.04	54.88	1297.99
Total		273786.52	8807.71	323216.51	Base Shear	1297.99	

Table 5 | Seismic Story Force Calculation - ASCE 7-10 | T= 0.597 sec

Figure 16 | Seismic Force Distribution - North Wing

	Equivalent Lateral Force Analysis	Modal Response Spectrum Analysis	Ratio of Response Spectrum to Static Base Shear
Base Shear, kips			
X - Direction	1297.986	1123.515	0.866
Y - Direction	1376.334	1154.027	0.838
Overturning Moment, ft-kip			
X - Direction	59363.549	49471.997	0.833
Y - Direction	62745.138	50824.154	0.810

Table 6 | Seismic Load Comparison

The equivalent lateral force analysis provides more conservative value than modal response spectrum analysis. In order to account collector forces and axial forces in the braced frame, modal response spectrum analysis is preferred to perform and diaphragm may be preferred to be modeled as a semi-rigid.

Compared to the base shear in the original design, 2174 kips, new base shear in San Francisco, CA is 1298 kips even though eccentrically braced frames provide response spectrum coefficient = 8. Due to the self-weight of the building and the building period in new location, the seismic response coefficient is higher than the original location.

Floor	Story Height (ft)	(1.2+0.2SDS)D+1.3QE+0.5L+0.2S (in)	(0.9-0.2SDS)D+OmegaQE (in)	Code Limit, Δ _a , = 0.015h _{sx} (in)
Roof	85.00	2.02	2.78	15.30
4th Floor	61.00	1.55	2.12	10.98
3rd Floor	46.33	1.19	1.58	8.34
2nd Floor	31.67	0.90	1.13	5.70
1st Floor	17.00	0.39	0.52	3.06
Auditorium	13.50	1.54	1.16	2.43
Base	0	0.00	0.00	0.00

STORY DRIFT COMPARISON

Table 7 | Story Drift Comparison

Allowable story drift for seismic loads are limited by ASCE 710 Table 12.12-1. This table provides allowable story drift based on the type of lateral load resisting system and risk category. For eccentrically braced frames in risk category III, the allowable story drift, Δ_a , is $0.015h_{sx}$ where h_{sx} is the story height below Level x. The drifts of the governing load combinations are not exceed the code limits of allowable drift. Compared to wind loads, which is serviceability based, the seismic load is designed for the ultimate condition. For complexity of modeling in auditorium floor, the story drift for auditorium provides a higher value relative to other floor. There is a diaphragm discontinuity between auditorium and first floor in the ETABS model. The discontinuity may provide inappropriate drift in the auditorium and the architectural layout of auditorium space limits the additional location where the braced frames would be placed. The table also provides the actual drift value.

DESIGN PROCESS OF ECCENTRICALLY BRACED FRAME

Through the analysis of ETABS 2013, eccentrically braced frames is designed and analyzed. Due to its difficulty of estimating the actual stiffness of the frames, there were several iterations to optimize designs. Figure ## shows the final design with member sizes for typical frames. In most of frame design, the length of link is defined as 48 inches for a V shaped bracing and 30 inches for a single diagonal bracing. The Figure ## shows the fixity of the member as well. Typical connection designs are provided in detailed. Beam-to-column connection is a moment resisting connection and braces are simply support to the beam with a gusset plates. Steel WT section is used to connect the gusset plate and braces. Compared to original design of braced frames without seismical detailed, the overall member sizes become larger and heavier to dissipate more energy during the seismic event.

EBF Brace-to-Link Connection Detail | Figure 18 EBF Brace-to-Beam Connection Detail | Figure 19

Figure 17 | Typical Eccentrically Braced Frame Design

Detailed Connection Design

Figure 18 | Eccentrically Braced Frame Brace-to-Link Connection

Figure 19 | Eccentrically Braced Frame Brace-to-Beam Connection

Link Design

One of the most important in designing eccentrically braced frames is a design of the link. Links are subject to shear and flexural due to eccentricity between the intersections of brace centerlines and the beam center line.

Link length is designed based on the ratio of nominal plastic flexural strength, M_p to nominal shear strength of an active link, V_p . Depend on the link length, the maximum allowable link rotation angle is limited. The major role of link is to resist the shear transferred from the braces. When $Pr/Pc \le A 0.15$, *AISC Seismic Provisions* allows to neglect the effect of axial force on the link.

 For $P_u/P_y \le 0.15$ (AISC Seismic Provision Eq. F3-2)

 For $P_u/P_y > 0.15$ (AISC Seismic Provision Eq. F3-3)

 $V_p = 0.6F_yA_{tw}\sqrt{(1-P_u/P_y)^2}$ (AISC Seismic Provision Eq. F3-3)

 $\begin{array}{ll} F_y &= \mbox{Yield Stress} \\ A_{tw} &= \mbox{Link Web Area} \\ P_u &= \mbox{Required axial strength} \\ P_y &= \mbox{Nominal axial yield strength} \end{array}$

In the exiting braced frame, hollow structural steel (HSS) section is used for the braces. However, the A/SC *Seismic Provisions* prohibits the usages of HSS section in eccentrically braced frames as a braces. Instead, *A/SC Seismic Provisions* allows I-shaped (wide flanges sections) or built-up box sections to be used as a link.

According to *AISC Seismic Provisions*, full-depth web stiffeners shall be provided on both sides of the link web at the diagonal brace ends of the link. The link to column connection must be a fully welded moment resisting connection with full penetration flange welds and a web connection cable of developing the shear capacity of the link.

Beam Design

The beam in eccentrically braced frames is designed in two different conditions: the link segment and the beam outside of the link. The amplified seismic load from the link is transferred to the beam outside of the link. From the effect of the overstrength factor, increasing the beam size results in increasing ultimate link force that beam must exist. According to the article by Samuel Dalton Hague, in order to avoid this complication in beam design, using shear links instead of longer links will reduce the link ultimate forces, and by selecting a brace with large flexural stiffness can reduce the demand on the beam. In order to transfer the moment and shear from the braces to beam, the brace-to-link concoction should be designed to resist the moment as a fully restrained moment connection.

Brace design

Compared to other elements in eccentrically braced frames, the braces are designed to remain elastic during the seismic event. Since the braces are fully restrained to the link in the beam, braces should be able to resist moments as well as axial. The connection between braces and column should be designed as a pinned and it would let braces to be designed as beam-columns. The braced frame that is not detailed for seismic loads does not allow to use braces as a compression member. However, the braces detailed for seismic event would be able to account the compressive strength on the braces. According to *AISC Seismic Provisions*, the seismically compact section should be used for braces and other elements.

Column Design

The columns in eccentrically braced frames are subject to the inelastic drift. The beam-to-column connection is allowed to be a fully restrained moment connection. This condition should meet the same requirements for beam-to-column connection in ordinary moment frames. The connection is also permitted to be designed as a simple connection with specific requirement in rotation of the frames.

Figure 20 | Eccentrically Braced Frame Layout | ETABS 2013 3D Model

2.3 SPECIAL MOMENT FRAME DESIGN

DESIGN CONSIDERATION

According to AISC Seismic Design Manual, Special moment frame and intermediate moment frame systems resist lateral forces and displacement through the flexural and shear strength of the beams and columns. Compared to braced frames, SMF and IMF often have larger and heavier beam and column sizes to resist the forces and seismic drifts. Since the moment frames tend to have ductile behavior than braced frame, special moment frame and intermediate moment frame tend to have a larger and heavier members in beams and columns.

Due to the architectural freedom from using moment frames, architects may prefer to have moment frames than braced frame or reinforced concrete shear wall. However, the increased beams size may cause the problem in architectural and mechanical system layout in the building. To avoid the interference between moment frames and mechanical systems, the moment frame often placed on the perimeter of the building and it also help to control the lateral torsion in seismic and wind loads.

Similar to other seismic force resisting system, moment frames are anticipated to achieve the plastic mechanism. *AISC Seismic Design Manual* provides two primary methods to move plastic hinging of the beam away from the column: reducing beam section or special beam-to-column connection.

Figure 21 | Reduced Beam Section
In this report, reducing the cross sectional properties of beam at a defined location away from column is used. Reduced beam section method is to trim the beam cross sectional area at a certain point away from the column face. This method forces to place the plastic hinge in the reduced beam section before the beam-to-column connection fails during the seismic event. Special connection detailing is guided by ANSI/AISC 468 in Part 9.2 of AISC Seismic Design Manual.

The main approach of designing moment farm is "strong column and beam connection.", AISC Seismic Provisions the relationship of the strength between beams and columns by the Equation E3-1:

$$\frac{\sum M_{pc}^{*}}{\sum M_{pb}^{*}} > 1.0$$
 (Provisions Eq. E3-1)

 $\sum M_{pc}^{*}$ = sum of the projections of the nominal flexural strengths of the columns (including haunches where used) above and below the joint to the beam centerline with a reduction for the axial force in the column

 $\sum M_{pb}^*$ = sum of the projection of the expected flexural strengths of the beam at the plastic hinge locations to the column centerline

MODELING PROCESS AND CONSIDERATIONS

Assumptions

Modeling for the design and analysis of special moment frame and special reinforced concrete shear wall are done by ETABS 2013 based on student's knowledge. To fulfill the graduation requirement of Master of Architectural Engineering, 3D modeling has been performed to analyze the lateral system redesign. The modeling of ETABS 2013 is mainly focused on the lateral force resisting system design. However, the software still provide the composite steel frame design to get the preliminary design of gravity system if necessary. The following assumptions were made during the modeling process:

- Steel frame design and composite beam design are performed to have preliminary design.
 - In steel frame design which is a built in function of ETABS 2013, the seismic detail analysis is ignored since there is a bug on ETABS 2013.
- The building base is designed as a pinned connection for both gravity and lateral frames.
- · Connection details
 - Beam-to-column connection is assumed to be fully restrained and the joints are considered as fixed.
 - Reduced beam section is applied to all the moment connection in ETABS 2013.
- Design Loads
 - Self-weight factor is applied to dead load case and it is accounted as the weight of the building for seismic design.
 - Snow load shall be accounted for the effective seismic weight in seismic design. However, compared to the existing project site, snow load is neglected in San Francisco.
 - The exterior wall load is applied as a linear load on the perimeter beams to account the dead load from exterior walls.
 - Lightweight overlay concrete slab in the greenhouse is applied as a surface load in form of dead load.
- Diaphragm
 - To account the collector forces and axial forces on the beam in eccentrically braced frames, the diaphragm is modeled as a semi-rigid instead of rigid.

LAYOUT OF MOMENT FRAMES - NORTH WING

Compared to the layout of eccentrically braced frame, additional number of moment frame is required. The original trial system was without shear wall. After several analysis on the model, it is realized that the building with moment frame only would not be effective to resist a high seismic load in San Francisco, California. Although special moment frame provides a higher response modification coefficient, additional lateral load resisting system might be required due to the ductility of the moment frame and the effective seismic weight. 12 inch thick special reinforced concrete shear all is introduced because of its stiffness. Typical beams in moment frames was experienced around 2,000 ft-kip of seismic loads when only moment frames are placed. However, after adding reinforced shear walls are provided where the elevator shaft and staircase are, the seismic loads was reduced significantly on the lateral beam.

Figure 22 | Special Moment Frame Layout | S2.1a&b

WIND LOAD ANALYSIS

Wind loads are experienced in similar way as eccentrically braced frame is. Compared to seismic loads, wind loads are less considered for the structure. The story drift from wind loads are not exceed the limit specified the code. The graph shows the story drift comparison between different wind load cases.

Wind Load Base Shear and Overturning

	Fx (kips)	Fy (kips)	Overturning (ft-kips)
Wind Case 1	133.498		6055.4662
		252.922	11959.9636
Wind Case 2	100.123		4541.5995
		189.691	8969.9723

Table 8 | Wind Load Base Shear and Overturning

SEISMIC LOAD ANALYSIS

Seismic Base Shear and Overturning

The building with moment frame experiences a higher building weight than eccentrically braced frame. Since additional shear walls are placed, the weight of concrete shear walls are included to the effective seismic weight. By using the different system, the software calculates the building periods depends on the new parameter.

Level	hx (ft)	Mass (In-s²/ft)	Weights, W (kips)	W*hx	Cvx	Story Forces, Fi (kips)	Story Shear, V _i (kips)
Penthouse Roof	85.00	8615.72	277.17	23559.26	0.06	128.79	128.79
4th Floor	61.00	60365.82	1941.97	118460.07	0.31	647.60	776.39
3rd Floor	46.33	79225.01	2548.67	118079.81	0.30	645.52	1421.91
2nd Floor	31.67	82151.34	2642.81	83697.75	0.22	457.56	1879.48
1st Floor	17.00	56587.12	1820.41	30946.93	0.08	169.18	2048.66
Auditorium	13.50	29013.13	933.35	12600.26	0.03	68.88	2117.54
Total		315958.14	10164.37	387344.08	Base Shear	2117.54	

Table 9 | Seismic Story Force Calculation - ASCE 7-10 | T= 0.484 sec

Figure 23 | Seismic Force Distribution - North Wing

	Equivalent Lateral Force Analysis	Modal Response Spectrum Analysis	Ratio of Response Spectrum to Static Base Shear
Base Shear, kips			
X - Direction	2117.844	1878.154	0.887
Y - Direction	1913.627	1618.057	0.846
Overturning Moment, ft-kip			
X - Direction	97241.724	88518.439	0.910
Y - Direction	89012.493	206201.476	2.317

Table 10 | Seismic Load Comparison

STORY DRIFT COMPARISON

Floor	Story Height (ft)	(1.2+0.2SDS)D+1.3QE+0.5L+0.2S (in)	(0.9-0.2SDS)D+OmegaQE (in)	Code Limit, Δ _a , = 0.020h _{sx} (in)
Roof	85.00	3.18	4.88	20.40
4th Floor	61.00	2.15	3.31	14.64
3rd Floor	46.33	1.88	2.89	11.12
2nd Floor	31.67	1.30	1.95	7.60
1st Floor	17.00	0.34	0.52	4.08
Auditorium	13.50	1.09	1.32	3.24
Base	0	0.00	0.00	0.00

Table 11 | Story Drift Comparison

According to ASCE 7-10 Table 12. 12-1, Special moment frame in risk category also defined that the allowable story drift, Δ_a , should be 0.015h_{sx}, which is same as the eccentrically braced frames. The drifts of the governing load combinations are not exceed the code limits of allowable drift.

DESIGN PROCESS OF SPECIAL MOMENT FRAME

Through the analysis of ETABS 2013, special moment frame is designed and analyzed. In preliminary design phase, the moment frames are placed where the existing lateral systems were placed and the frames are assigned to auto-selected section, which allows the software to determine the appropriate member sizes. It is preferred to place the moment frames on the perimeter of the structure to resist lateral torsion efficiently. After first several analysis, additional moment frames were placed. However, it is realized that lateral system design with only moment frames is not effective to this building.

Instead of putting additional moment frames, special reinforced concrete shear wall is placed where the elevator shaft and stair case are. In the original design, the elevator shaft and stair case were designed masonry wall, but they are now structurally designed as part of lateral systems, except support as the elevator shaft and stair case.

Figure 24 | Typical Special Moment Frame Design

Reduced Beam Section and Connection Design

One of the methods to place the plastic hinges to dissipate the energy is to use the reduced beam section method. The failure of the connection of structural members is one of the most critical during the seismic event. To prevent the failure of the connection, it is to force to place the plastic hinges where cross section of the beam is trimmed to fail before the connection between beam and column are failed. This reduced beam section reduces the flexural and shear capacity of the beam at the certain point.

It is recommended to use AISC 358-10 Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications to design the connection in the special moment frames. AISC limits the section properties of beam when reduced beam section design is used.

- Beam depth is limited to W36 for rolled shaped
- Beam weight is limited to 300 lb/ft
- Beam flange thickness is limited to 1 3/4 in.
- The clear span-to-depth ratio of the beam shall be grater than 7 for special moment frames.

A typical design of special moment frame is shown above Figure ## with the appropriate member sizes.

CHAPTER 3 - BUILDING ENCLOSURE BREADTH

Due to the relocation from east coast, the United States, to San Francisco, California, the building enclosure need to reevaluate the performance in the new climate condition in San Francisco, California. In existing location of the building, building enclosure and mechanical system are controlled by the heating system. However, in new project site, the average temperature over the year is less fluctuating and staying around 50'F to 70'F.

	East Coast, USA	San Francisco, CA
Max Temperature, F	91	99
Mean Temperature, F	46.2	54.7
Min Temperature. F	-14.1	34

Table 11 | Temperature Comparison

It is predicted that the new location of the building would require a better performance in cooling process and less performance in heating around years. Since the building is classified as the biochemical laboratory building in the university, the evaluation and modification of mechanical system would be a challenge to the student in structural option.

Figure 25 | Wall Assembly Section | A4.06

	Gypsum Wall Board	Metals Studs	Sprayed Polyurethane Form Insulation/Air Barirrer	Air Space	Brick					
Thickness (in)	0.625	6	3	2	4					
Thermal Conductivity (Btu/h*ft*F)	0.0942	0.0248	0.0144	0.1947	0.2484					
Permeability (perm*in)	21.4667	106.4463	1.4483	477.037	4.3959					
Table 12 Thermal Property of Wall Assembly										

Instead of analyzing the mechanical system, through this breadth, the building enclosure in both the existing and new locations will be analyzed their performances. Through *AE 542 Building Enclosure Science and Design*, WUFI 5 is introduced to perform the analysis of the moisture transportation through a building enclosure with using real weather data for the location of the building.

To evaluation the original design, a typical wall assembly is used for both locations, but the weather data will be different and chosen by the software, WUFI 5. The duration of the analysis was two years, October 2015 to October 2015. Due to lack of the climate information, the existing location is approximated to the closest city.

During the two year analysis for both locations, there were no issue of water condensation found. According to the graphs on Figure ## & ##, green circle is generated under the curve line. It explains that the interior spaces in both east coast, USA and San Francisco, CA would not experience water condensations throughout the period of the analysis, October 2015 to October 2017.

Figure 26 | Relative Humidity vs. Temperature - East Coast, USA

Figure 27 | Relative Humidity vs. Temperature - San Francisco, CA

Table ## - Water Content Comparison shows that less amount of wanter content value is changed at the end in San Francisco, CA changes less than East Coast, USA and it means that the existing building envelope design is performing better in the new location, San Francisco, California.

Total Water Content	East Coast, USA	San Francisco, CA
Start	0.06	0.06
End	0.28	0.09

Table 12 | Wanter Content Comparison

CHAPTER 4 - CONSTRUCTION BREADTH

The relocation of the building brings the impact on the redesign of the structural system, especially in lateral force resisting system. Due to the relocation and the effects it had on the building structure, the project cost and the project schedule for the structure would change. Since the project schedule of the existing building is not available, it is necessary to provide the approximate schedules for structural redesigns. The structural redesigns of eccentrically braced frame and special moment frames would bring different impact on the schedule.

Referencing appendix section ##, the overall sequence of the construction on the structural steel building would be similar to each other. However, in redesign of eccentrically braced frames, the project schedule would be predicted to take longer than the schedule for moment frames since the additional activities of adding braces take extra time on the construction. On the other hand, construction of the reinforced concrete shear wall would occur concurrently with the structural steel framing since the steel framing should be framed into the shear wall to resist the lateral forces. This adds an additional task to the project schedule similar to the bracing activity, however can be constructed concurrently with the steel erection whereas the bracing activity has to occur sequentially.

Beam/Girders	% of Structural Steel Elements	Quantity
W21X50	56%	3285.52
W24X84	24%	1408.08
W30X99	20%	1173.4
TOTAL	100%	5867

Table 13 | Sample Calculation of Beams/Girder Estimation

RSMeans Facilities Construction Cost Data 2015 is used to estimate the project costs and schedule. There are several assumptions made for the cost estimates and generation of the construction sequences. ETABS 2013 could generate the total amount of the structural steel members by its weights and total length of each member sizes used. The total steel for the building was calculated in ETABS 2013, which was then estimated for each floor based on its square footage. Then, it would help to estimate the production rate to generate the project schedule. Detailed calculations and project schedule are provided in appendix section ##.The construction costs including building interiors, building shells, and other factors are assumed identical to the original project. Typical structural steel member sizes, including beams, girders, braces, and columns, are selected to calculate the project costs. The calculations of roof and floor decking are also performed. The material costs and labor costs for moment connection details is difficult to estimate with RSMeans, so an additional 15 percent of costs is added to the beams, and braces if moment connection is required to both sides of members.

	Eccentrically Braced Frame	Special Moment Frame
Project Duration		
Start Date	04/07/2015	04/07/2015
Finish Date	07/15/2015	07/10/2015
Construction Cost	\$2,154,381.39	\$2,119,423.89
-	Table 14 Project Duration and Cost (Comparison

Based on the estimation of project costs on the structure and schedule, to use eccentrically braced frame would increase the project duration by five days and additional cost of \$34,975.50 versus using special moment frames with special reinforced concrete shear wall. With the additional members used in eccentrically braced frames, there are more connection needed to be done on the site, increasing the schedule.

CONCLUSION

The report consisted of analysis of Life Sciences Building in east coast, the United States. After studying the existing structure in both gravity and lateral system, the design scenario was created that the identical design of Life Sciences Building is proposed to construct in San Francisco, California. San Francisco is classified as a high seismic region for structural engineers. For educational purpose, the redesign of lateral force resisting system is proposed according to the new location. Due to the redesign of the lateral system, there were several things to consider in redesigning.

To minimize the effective seismic weight, lightweight concrete slab is considered. However, since the existing building is a college laboratory building with a strict floor vibration limitation, it is suggested that the lightweight concrete slab is not effective to the building. Using lightweight concrete slab brings the reduction of building weight, however, the deduction of floor mass and shallow framing member size generate floor vibration. Therefore, using lightweight concrete requires to use deeper steel member to control the floor vibration.

The existing lateral system, steel braced frame without seismic detailed, is not appropriate to the new project site. Therefore, two new lateral force resisting system is suggested to the owner: eccentrically braced frames and special moment frames. Through the research and redesign process, each system provides its advantages and disadvantages. After the investigation of two different systems, eccentrically braced frames is more effective than special moment frames. Due to ductile behavior of special moment frames, a significant number of moment frame is required to resist the seismic loads.

In original design, the design team already laid out the lateral system carefully according to the architectural layout. With a minor modifications in architecture eccentrically braced frame would be placed and provide sufficient strength and stiffness.

In order to compare the redesign of eccentrically braced frames and special moment frames, the project cost estimates and construction schedule were generated. In the result, using eccentrically braced frames would increase the project duration by five days and addition cost \$34,975.50 versus using special moment frames.

The relocation of the building suggested to evaluate the existing building enclosure system to see the existing system is sufficient enough to accommodate new climate. The analysis provides that the existing envelop system is adequate without any modification.

Although eccentrically braced frames increase the construction duration by five days and additional cost #34,975.50, it is suggested to use as lateral force resisting system to provide better performance over special moment frames.

REFERENCES

- American Institute of Steel Construction. (2011). *Steel Construction Manual* (Fourteenth ed.). American Institute of Steel Construction.
- American Institute of Steel Construction. (2010). *Seismic Design Manual (Second ed.).* American Institute of Steel Construction.
- American Society of Civil Engineers. (2010). ASCE-7 10, Minimum Design Loads for Buildings and Other Structures. Reston, VA.

Hamburger, Ronald O., "Earthquake and Seismic Design"

Hamburger, Ronald O., Krawinkler, Helmutt, Malley, James O., Adan, Scott M. "Seismic Design of Steel Special Moment Frames"

Nucor Corporate. (2013). Vulcraft Deck Catalog. Retrieved from Vulcraft: http://www.vulcraft.com/

Popov, Egor P., Roeder, Charles W. "Design of an Eccentrically Braced Steel Frame"

- Richards, P. (2010). "Estimating the Stiffness of Eccentrically Braced Frames." Pract. Period. Struct. Des. Constr., 15(1), 91–95.
- Sabelli, Rafael, Roeder, Charles W., Hajjar, Jerome f. "Seismic Design of Steel Special Concentrically Braced Frame Systems"
- Sabelli, Rafael, Sabol, Thomas, A., Esterling, W., Samuel. "Seismic Design of Composite Steel Deck and Concretefilled Diaphragms"
- U.S. Geological Survey. (2013, July). U.S. Seismic Design Maps. Retrieved from U.S.Geological Survey: http://www.usgs.gov/

APPENDICES

2.2 ECCENTRICALLY BRACED FRAME

WIND LOAD STORY DRIFT COMPARISON

Floor	Story Height (ft)	Wind Load Case 1 (in)	Wind Load Case 3 (in)	Code Limit, L/400 (in)
Roof	85.00	0.18	0.14	2.55
4th Floor	61.00	0.10	0.08	1.83
3rd Floor	46.33	0.08	0.06	1.39
2nd Floor	31.67	0.06	0.04	0.95
1st Floor	17.00	0.03	0.02	0.51
Auditorium	13.50	0.08	0.05	0.41
Base	0	0.00	0.00	0.00

ECCENTRICALLY BRACED FRAME DESIGN

LRFD Load Combination [1.2+0.2*S DS]D+rho*QE+0.5L+0.2S																
Required Shear Strength of the Link				the		VOF				VE						
vu, kips	253.71	22	2.867	no	1.3	VQE	159.499	۷L	28.693		0					
P story	3680 ki	ps				Pe story, ki	ps 964954.33	Rm	1	H (Total S 1427.7	Story Sh L 11425	, in d 204	elta H, in 0.301831			
82	al 1.00	pha	1	P story	y 3680	Pe story	964954.33	AISCE	Specifica	ition Equa	tion A-8-	6				
Required Axial Strength of the Link including Second-Order Effect Pu, kips	P 117.28	D :	E 3.651	32	1.00	rho	1.3	P QE	84.545	PL	3.673	es o				
81	C 1.00	m	a 1	alpha	1	Pr	117.28	Pel, k	ip 240138	E	1 29000	к 1480	0.875	Link Leng 48	th, L, in	
Required Flexural Strength of the Link including Second-Order Effect Mu, kip-ft	N 223.62	ID 34.	E .3794	32	1.00	rho	1.3	M QE	122.8673	ML	30.303	vis O				
Py, kips	F) 1000	1	50 ×	Ag	20											
Pc = Py	Pi 1000	r/Pc	0.117	AISC S	eismi	c Provisions	Section F3.5b(2)									
Pr/Pc = < 0.15 √p	F) 254.52	1	ر 50	Alw	8.48	d	21.1	tf	0.685	tw	0.43					
Mp, kip-in	۴۱ 8000	1	2 50	z	160											
Link Length, e	48 <		1	1.6Mp 5	/Vp 50.29	ок		w21x	68	satisfies **Check	the requi AISC Seis	irements smic Desig	lor moderate n Manual Ta	ely ductile l ible 1-3	ink beam	flanges.
Available Shear Strength Shear Yielding - AISC Selsmic Provisions Eq. F3-1 Vn	V 254.52	p 29	54.52													
Flexural Yielding - AISC Seismic Provisions Eq. F3-7 Mn	333.	Mp 33	1	8000	e	48										
phi Vn	229.	phi 07		0.9	Vn ;	254.52 >			Vu	253.71	ок					
Link Rotation Angle - AISC Selsmic Provisions Section F3.4a					x	Vp		25.4	Мр		e	40				
Limit, rad	0.	08 >			y p, r 0.0	rad θρ (24345	0.0	259.: 03255(delta	0.664	h, ft	17.00	ок			
Available Compressive Strength - AISC Manual Table 6-1 Pu, kips	117.	28 <			phi c	Pn, kip p*1 112.99	10^3	8.	85							
Available Flexural Strength - AUSC Manual Table 3-2 Mu, kip-ft	223.	62 <			phi b	Mp, kip-ft 563 OK			••c	eck Lb <lp< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td></lp<>	•					
Combined Loading																
	(1.2 >			PT/PI	1.038		117.	28	112.99	NG					
FALSE					Pr/2	Pc+(Mr. Pr			Pc		Spec. E Mrx	Eq. H1-1b	Max M	rv	Mcv	
w21x58		1 > is ad	lequate	to re	esist t	0.916 he loadas g	iven for the link	117. segme	28 ent.	112.99		223.62	563		0	563 OK
Lateral Bracing Requirments - AISC Seismic Provisions F3.4b Pu	25.	Ry 88		1.1	Fy	z 50		1	ho 60	20.4						
Mr, kip-in	88	Ry 00		1.1	Fy	z 50		1	60							
β br, kip/in	119.	phi 83		0.75	Mr	Cd 8800			Lb 1	48	ho	20.4	AISC Manu	al Specific	ation App	endix 6

Stiffener Requirements Minimum Width of Each Stiffener

Stiffener Requirements

Minimum Width of Each Stiffener

w min, in			bf		tw	
			71	8 27	0.43	
Minimum Required Thickness		-		0.27	0.45	
t min			****		0.7550	2/8 in
			130	0.42	0.750	5/6 11
Desides of Constant for a Ulab Detection	•			0.43	0.3225	0.38
Required Spacing for a Link Rotation	Angle					
Link Rotation Angle = 0.08 rad						
Spacing			tw		d	
		8	.68	0.43	21.1	
Link Rotation Angle = 0.02 rad or Les	s					
Spacing			tw		d	
		18	.14	0.43	21.1	
By interpolation						
Spacing			Rota	tion Angle		
		17	15	0.0263		
AISC Seismic Provisions E3 5b(A)				0.0200		
Link Donth loss than 25in - intermedi	ate stiffners required on one si	do of the web	anh			
Link Depth less than 25in = Intermedi	ate stimmers required on one si	de or the web	only			
Minimum Required Thickness						
t min			tw		3/8 in	
			1.43	0.43	0.375	
Minimum Required Width of Interme	ediate Stiffeners on one side o	nly				
w min			bf		tw	
		3	.71	8.27	0.43	
AISC Seismic Provisions pg 5-351-352	must be checked					
EBF Beam Outside of the Link Design	0.452 kizz	F 262 Mar	205	BATAT Mar		
V D	9.452 Kips PL 11.138 kips VL	12.760 kips	V QE	84.545 kips 8.607 kips		
MD	32.770 kip-ft M L	28.588 kip-ft	M QE	69.921 kip-tt		
Link Length Beam Span	48 in 29.9167 ft					
Beam		Brace		Plate		Column
Size w21x68 Fy	50 ksi	Size w14x10 Fy	9 50 ksi	Size wt Fy	8x28.5 50 ksi	Size w12x120 Fy 50 ksi
Fu Rv	65 ksi 1.1 AISC Seismic Provisions Table A3.1	Fu Rv	65 ksi	Fu Rv	65 ksi	Fu 65 ksi Ry AISC Seismic Provisions Table A3.1
E .	29000 ksi	E 2	9000 ksi	E	29000 ksi	E 29000 ksi
Geometric Property	20 in/2	T brace	10 in		0 0	A 35.2 inA2
d	21.1 in	d	14.3 in	â	8.22 in	d 13.1 in
t _w	0.43 in 8.27 in	t _e	14.6 in	t.,	0.43 in 7.12 in	t _w 0.71 in b. 123 in
1,	0.685 in	4	0.86 in	t,	0.715 in	t _f 1.11 in
k _{det}	1.375 in	k _{det} 2.	1875 in	k _{det}	0 in	K _{det} 2 in
K des	0.875 in	K _{des} K ₁	1.46 m 1.5 in	K _{des}	0 in	k ₁ 1.1875 in
b ₁ /2t ₁	6.04	b _t /2t _t	8.49	b ₁ /2t ₁	0 0	b ₁ /2t, 5.57
h/t _w	43.6	h/t _w	21.7	h/t,	0 0	h/t _w 13.7
Zx	160 in^3	Z _x	192 in^3	Z,	0 in^3	Z, 186 in^4
h	20.4 in	h	13.4 in	h _o 📕	0 in	h _o 12 in^3
r _y	1.8 in	r,	3.73 E400 kinch-1	r _y u bar	1.6 in	ry 3.13 in 0.78E.04 kint4.1
		bx 1.9	E-03 kip-ft^-1	x bar	1.94 in	bx 1.67E-03 kip-ft^-1
						but a same as his fact a
		by 2.5	iE-03 kip-ft^-1		in	by 3.51E-03 kip-ft*-1

LRFD Load Combination (1.2+0.2*S DS)D+rho*QE+0.5L+0.2S

Required Strength Adjusted link shear strength						AISC Seismic Pro	visions Fi	3.3		
v	307.97	Ry	1.1	Vn	254.52					
Axial force in the beam outside of the link P Emh, kips	270.98	Ry	1.1	Vn, kip	254.52	L, ft	29.9167	H, ft	17.00	
The Resulting Link End Moment M link, kip-in	7391.17	Ry	1.1	Vn, kip	254.52	e, in	48			
The Portion of the Moment taken by the Beam Outsid Ratio	de of the 0.663	Eink (bol) I bol, in^4	1480	L bol, ft	12.95835	l br, in^4	1240	L br, ft	N 21.38	1 link 7391.17
Moment in the Beam Outside of the Link	408.47	kip-ft								
Resulting Overstrength Factor										
Factor	1.93	Ry	1.1	Vn	254.52	V QE	159.499			
Moment in the beam outside of the Link due to the li	nk mech	anism based on the expected sh	near st	rength of	f the link					
M Emh, kip-ft	135.00	Resulting Overstrength Factor	1.93	M QE, K	69.9206					
Axial Force in the beam the outside of the link due to	the link	mechanism based on the expec	ted sh	ear stren	igth of the	link				
PEmh	163.24	Resulting Overstrength Factor	1.93	P QE	84.545					
Shear in the beam the outside of the link due to the li	nk med	hanism based on the expected si	hear s	trength o	f the link					
VEmh	16.6	Resulting Overstrength Factor	1.93	V QE	8.607					

Amplified Seismic Loads											
LRFD Load Combination (1.2+0.2*S DS)D+Emh+0.5L+0.2S											
Required Axial Strength of the Beam outside	the link										
Pu, kip		P D				P Emh		PL	P	s	
	179.16				9.452		163.24		5.362	0	
Required Flexural Strength of the Beam outsid	de the link										
Mu, kip-ft		MD				M Emh		ML		4 5	
	195.18			1	32.7704		135.00		28.5883	0	
Required Shear Strength of the Beam outside	the link										
Vu, kip		VD				V Emh		VL	2	15	
	38.59				11.138		16.6		12.76	0	
Width-to-Thickness Limitations											
Unbraced Length											
Lb, ft		L, ft				e		dc			
	12.41251667				29.9167		48		13.1		
Second-Order Effects											
Pr						Pnt		B2	P	Ht.	
	342.40	-					179.16		1	163.24	
81		Cm				alpha		Pr	P	el toona	AISC Specification Eq. A-8-3
Pe1, kips	1.01	F			1		1	K1	1/9.16	19093	
rea, nips	19093	-			29000	·	1480	n	1	148.9502	
Mu											
	195.18										
Available Compressive Strength of the Beam											
phi Pn		phi c				Fcr, ksi		Ag			
Par del	458.87				0.9	11.6	25.49		20		
re, KSI	20.04	E, KSI			29000	ιο, π	14.67	ry, in	1.8		
Rr*Fv/Fe	23.34	Rv			29000	Fv. ksi	14.07	Fe, ksi	1.0		
	1.837				1.1		50		29.94		
Fcr, ksi		Ry*Fy/Fe				Ry		Fy, ksi			
	25.49				1.837		1.1		50		
Available Flexural Strength of the Beam						AISC Ma	nual Tabl	e 3-2 and 3-1	0		
phi b Mn, kip-ft		Ry				phi b Mn	from Tab	de 3-10			
	924				1.1		840				
Check combined flexure and compression of the Beam	_					AISC Specif	fication Eq.	H1-1a			
PT/PC	0.746		342.40	prii c Pn	= PC 458.87	PT/PC > 0.2 OK	r				
Pr/Pc+8/9*(Mrx/phi,b,Mnx+Mry/phi,b,Mny)	Pr/Pc			Mrx		Mcx		Mry	Mcy	Pr/Pc+8/9*(Mrx/	phi,b,Mnx+Mry/phi,b,Mny) < 1.0?
Pr/2Pc+(Mrx/phi.b.Mnx+Mrv/phi.b.Mnv)	0.934 Pr/Pc		0.746	Mrx	195.18	Mex		924 Mrv	0 924.000 Mcv	OK Pr/2Pc+(Mrx/obi	b.Mnx+Mry/phi.b.Mny) < 1.02
and a second s	0.934		0.746		195.18		1	924	0 924.000	OK	
Available Shear Strength	AISC Ment	al Table 2-6									
Phi,v Vn, kip	Vu, kip	al rable 3-0									
	147		38.59	OK							

EBF Brace De	sign														
PD			15.452	kips	P	L		22.13	4 kip	s	P QE		226.672	kips	
V D			1.634	kips	v	L		0.98	37 kip	s	VQE		2.713	kips	
MD			15.230	kip-f	ft N	1 L		19.23	13 kip	o-ft	M QE		53.103	kip-ft	
Link Length			48	in											
Beam Span		:	29.9167	ft											
Described for															
Required Sti	rength														
V, kip		Ry		v	'n, kip										
	349.96		1	1.1	254.52	2									
Overstrengt	h Factor														
Factor		Ry		v	'n, kip	VQ	E, kip								
	2.19		1	1.1	254.57	2	159.499								
Moment in t	the brace du	ue to the link me	chanisr	m											
M Emh		Overstrength Fa	ctor	N	I QE										
	116.51		2	19	53.102	в									
Axial forece	in the brace	e due to the link	mecha	nism											
P Emh		Overstrength Fa	ctor	P	QE										
	497.35	-	2	19	226.67	2									
Shear in the	brace due t	to the link mech	anism												
VEmh		Overstrength Fa	ctor	v	QE										
	5.95	0	2	19	2.71	3									
Amplified Se	ismic Loads														
LRFD Load C	ombination														
(1.2+0.2*5.0	S\D+Emh+0	51+0.25													
11.2.0.2.00	5/572111176														
Required Av	ial Strength	of the Ream ou	tsida th	a lini	4										
Pu, kin		PD		P	Emh	PI		PS							
,	530.05		15.4	52	497 39		22 134	÷ .		0					
	330.03				401.0	·				~					
Required Els	oursel Streep	ath of the Beam	outside	a the	link										
Required Fie	xural stren	gth of the beam	outside	ethe	IIIK LEmb										
Mu, kip-rc	147.45	MD	15.33	on ^N	116 ET		10 3333	MS							
	147.45		15.23	02	110.5		19.2333			0					
Benning of Sh	one Etropoti	h of the Beam out	and do at	he Ber	L.										
Required Sh	ear strengt	n of the beam of	itside ti	neiin	IK .										
vu, kip		VD		., ^v	Emn	, VL	0.087	25		0					
	8.73		1.6	34	6.0		0.987			0					
Width-to-Th	ICKNESS LIM	itations													
Unbraced Le	ingth														
Lb, ft															
	21.38														
Second-Ord	er Effects														
Pr, kips				P	nt	B2		Plt							
	530.05						1								
B1		Cm		a	lpha	Pr		Pe1, ki	ips	AISC Sp	ecification Eq.	A-8-4			
	0.665			0.6	1	1	530.05		539	4 **Check	k B1<1				
Pe1, kips		E		1		K1		L, ft							
	5394		290	00	124	D	1		2	1					
Mu, kip-ft															
	147.45														
Combined L	oading - Al	SC Manual Tabl	e 6-1												
combined c	ou unig - Mi	Se Mandar Tabl													
size		W14X109													
Pr/Pc		P			DX.		Pr, kips								
	-1.12E+03		-2.11	E+00	1.90	-03	53	0.05							
pPr+bxMrx+	byMry	p			Pr, kips		bx	M	lrx, ki	p-ft by	r 1	Mry P	Pr+bxMr	<pre>k+byMry=<1?</pre>	AISC Manual Eq. 6-1
	-1119.708		-2.11	E+00	530	0.05	1.90	E-03	1	47.45	2.56E-03	0 0	DK		
Available Sh	ear Streng	th - AISC Manu	al Table	e 3-6											
phi y Vn. kin		Vu. kip			phi.v V	n>Vµ∂	2								
and a series with	250			8 72	OK		-								
	408			0.73											

EBF Column Design

P D	108.707	kips	PL	72.421	kips	P QE	343.792	kips
M Dx	5.700	kip-ft	M Lx	6.051	kip-ft	M Emhx	153.978	kips
M Dy	1.246	kip-ft	M Ly	0.358	kip-ft	M Emby	0.242	kip-ft
Link Length	48	in						
Beam Span	29.9167	ft						

Required Strength

Sum of the ad	justed link y	ield strength	n of the links a	t the 3rd, 4th	, and roof	
v		Ry	Sum Vn	Vn for 3rd	Vn for 4th an	nd Roof
	692.75	1.1	572.52		254.52	318
Governing Loa	ad Combinat	tion for the C	olumn in Corr	pression		
(1.2+0.2*S DS)	D+Emh+0.5	L+0.25				
Required Axia	I Compressi	ve Strength o	of the Column			
Pu, kip		PD	P Emh	PL	PS	
	881.15	108.707	692.75		72,421	0
Required Flex	ural Strengt	h of the Colu	mn simultane	ous with the	Axial Compression	
Mux, kip-ft		M Dx	M Emhx	M Lx	M Sx	
	164.98	5.6995	153.98		6.051	0
Required Flex	ural Strengt	h of the Colu	mn simultane	ous with the	Axial Compression	
Muy, kip-ft		M Dy	M Emby	M Ly	M Sy	
	2.17	1.2461	0.24		0.3578	0
Governing Loa	d Combinat	tion for the C	olumn in Ten	sion		
(0.9-0.2*5 DS)	D+Emh+1.6	4				
Required Axia	I Tensile Str	ength of the	Column			
Pu, kip		PD	PEmh	PH		
	-616.65	108.707	-692.75		0	
Required Flex	ural Strengt	h of the Colu	mn simultane	ous with the	Axial Tension	
Mux, kip-ft		M Dx	M Emhx	M Hx		
	157.97	5.6995	153.98		0	
Required Flex	ural Strengt	h of the Colu	mn simultane	ous with the	Axial Tension	

Muy, kip-ft M Dy M Emhy M Hy 1.11 1.2461 0.24 [#] 0

Trial Size w12x50

Width-to-Thickness Limitation **AISC Seismic Provisions Table 1-3 must be checked**

second-Order Effects

۲, kips				Pnt		B2	Plt		
	76.09			-6	16.65		1	692.75	
31x		Cmx		alpha		Pr	Pe1x,	, kips	AISC Specification Eq. A-8-4
	0.613		0.6		1		76.09	3692	**Check B1<1
Pe1x, kips		E		1 x		K1	L, ft		
	3692		29000		1070		1	24	
31y		Cmy		alpha		Pr	Pely,	, kips	AISC Specification Eq. A-8-4
	0.681		0.6		1		76.09	642	**Check B1<1
Pely, kips		l y 👘		1 x					
	642		186		1070				

Combined Loading - AISC Manual Table 6-1

size		w1	2x50												
Pr/Pc		р		bx		Pr, kips									
	0.07		9.78E-04		1.67E-03		76.09								
Pr+bxMrx+byMry	/	р		Pr, I	kips	bx		Mrx, kip-ft		by		Mry		pPr+bxMrx+byMry=<1?	
	0.358		9.78E-04		76.09		1.67E-03		164.98		3.51E-03		2.17	OK	

EBF Brace-to-Lin P D M Dx M Dy	nk Connection Design			kips kip-ft kip-ft	P L M Lx M Ly	kips kip-ft kip-ft	P QE M Emhx M Emhy	kips kips kip-ft	P S M Sx M Sy	kips kip-ft kip-ft	P H M Hx M Hy	0.000 kips 0.000 kip-ft 0.000 kip-ft
Link Length Beam Span Brace Connection Pu, kip	Forces	530.05	48 29.9167 Vu, kip Mu, kip-ft 8.73	in ft 147.45								
Brace Flange Forc Pfa, kips	•		Force in each flange due to	axial load								
Pff, kips		265.02	Force in each flange due to	the moment								
Puf. kips		131.65	Maximum resultant force in	each flange								
Brace Web Force Vw		396.68										
Brace Flange Con phi Rn, kips	nection	612.105	i phi Fu, ksi 5 0.75	Ae, in^: 65 12.	2 b f, in t f, in 556 14.6	phi Rn>Puf? 0.86 OK						
Concentrated For	ces at Brace Flange Connection											
Vur		297.27	Pur H, ft 396.68	14.67 19.57	118							
Phi Kn		170.93	phi Kn	170.93	tw kides 50 0.43	1.19 Z	NG					
If the design fails,												
Beam Web Local Phi Rn	Crippling Strength at the Brace Flange Con	nection 192.46	phi Rn 6 0.75	t w, bea 256.61	am Ib d,beam D.43 2	n t f, beam 21.1 0.685	E Fyw p 29000 50 N	hi Rn>Puf? G				
Flange Local Bend Phi Rn	ing Strength	131.97	phi Rn 7 0.9	Fyf 146.63	tf 50 0.685	phi Rn>Puf? NG						
phi Rn - Limit		131.97										
Beam Web Stiffne	rs											
Ps, kip Try		82.65	Vuf, kip phi Rn, kip 297.27 Width, in Cornor Clip 4.00	131.97 s 1 2.	wst, in Lst, in 375 3	14.98						
t min, in		0.850	Ps, kip phi 82.65	Fy, ksi 0.9	w st, in 36 3							
Use			0.900 x	4	1.00							
Minimum double	sided fillet weld size required to transfer t	he required stiffner loa	d from the beam flange to th	e siffner								
D min, sixteenths		6.60	Ps, kip Weld Stren 82.65	gth, kip/in w st, in 1.392	3							
Use Minimum double	sided fillet weld size required to transfer t	he stiffener force to the	7.00 siteenths									
D min, sixteenths Use		1.98	Ps, kip Weld Stren 82.65 2.00 siteenths	gth, kip/in L st, in 1.392 14	i.98							
EBF Brace-to- Beam/Column Connection Design		Resea Chase		Form A	-		Room Choor			Collector		
P D	15.452 kips	V D	1.634 kips	P D	A101	9.452 kips	V D	11.138	kips	conector		
P QE	22.134 kips 226.672 kips	V QE	-2.713 kips	P L P QE	8	5.362 kips 4.545 kips	V QE	-8.607	kips kips	P QE		kips
Link Length	48 in											
Beam Span Beam	29.9167 ft		Brace			Plate				Column		
Size	w21x68		Size w14x10	9		Size	wt8x28.5			Size	w12x120	50 L.
Fu	65 ksi AISC Seismic		Fu	65 ksi		Fu	65	ksi		Fu		65 ksi AISC Seismic
Rv	Provisions Table 1.1 A3.1		Rv			Rv	0	,		Rv		Provisions 0 Table A3.1
E	29000 ksi		E	29000 ksi		E	29000	ksi		E	290	00 ksi
T brace	18.375		T brace	10			0 0		2			
A d	20 in*2 21.1 in		A d	32 in^2 14.3 in		A d	8.39	in^2 in		A d	35	5.2 in^2 3.1 in
t _w	0.43 in		t	0.525 in		t	0.43	in		t.	0.	71 in
Dr tr	8.27 in 0.685 in		Dr tr	14.6 in 0.86 in		Dr tr	7.12	in in		Dr tr	12	11 in
k _{oet}	1.375 in		k _{ost}	2.1875 in		k _{ost}	0	in		k _{ost}		2 in
k ₁	0.875 in		k,	1.96 in 1.5 in		k ₁	0	in		k ₁	1.18	75 in
b _i /2t _r	6.04		b/2t,	8.49		b ₁ /2t ₁	0	()	b/2t,	5.	57
L.	1480 in^4		1.	1240 in^4		l.	0	in^4	,	1.	13	70 in^4
Z,	160 in*3 20.4 in		Z,	192 in^3 13.4 in		Z,	0	in^3		Z,	1	86 in^4
r,	1.0		f.	3.73		r.,	16	in		r,		13 in
	1.8 in											
	1.8 in		p	-2.11E+00 kips^-1		y bar	1.94	in		P	9.78E-	04 kips^-1
	1.6 m		p bx by	-2.11E+00 kips^-1 1.90E-03 kip-ft^-1 2.56E-03 kip-ft^-1		ybar xbar Gage	1.94 1.94 3.5	in in in		p bx by	9.78E- 1.67E- 3.51E-	04 kips^-1 03 kip-ft^-1 03 kip-ft^-1

Width of the Whitmore section									
17.4 Average									
of the gusset plate **Draw the									
detail section L, in 6.04									
Radius of gyration of the gusset plate	t in								
r, in 0.289	t, in	1						AISC	
KL/r	к	L, in		r, in		KL/r =< 25	,	Specification Commentary Table C-A-7.1	
13.60 Design strength of the gusset	0.6	5	6.04		0.289	ок			
Pn. kips	Fcr	Ag		Lw		t plate, in		AISC Specification J4.4(a)	
867.82 phi Pn	phi	i0 Pn	17.36	Ru	17.4	phi Pn > Ru	1	F cr = F y i	in
781.04 Trial connection	0	9	867.82		530.06	OK		USE 1	
between gusset and brace Size	# of members								
wt8x28.5 bf	T brace	2 bf < T br	ace?						
7.12	:	0 OK							
Tensile yielding stregth of WT sections									
phi Rn, kips 755.1	phi C	Rn, kips .9	839	Fy, ksi	50	Ag, in^2	16.78	phi Rn > Ru? OK	
Tensile rupture strength of WT sections									
phi Rn, kips 554.28	phi 0.	Rn, kips 75	739.04	Fu	65	Ae	11.37	U x bar 0.838 1.94	
12	An, in^2 13.	Ag, in^2 i6	8.39	d h, in	1.125	t f, in	0.715	phi Rn > Ru? OK	
Compressive strength of WT									
Jections									
								AISC Specification	
KL/r	к	L, in		r, in		KL/r =< 25	?	AISC Specification Commentary Table C-A-7.1	
KL/r 2.23	к 0.	L, in	5.5	r, in	1.6	KL/r =< 25 OK	?	AISC Specification Commentary Table C-A-7.1 L = last bolt on brace to first bolt on gusset plate	
KL/r 2.23	к 0.	L, in	5.5	r, in	1.6	KL/r =< 25 OK	?	AISC Specification Commentary Table C-A-7.1 L = last bolt on brace to first bolt on gusset plate AISC Specification	
KL/r 2.23 phi Pn 755.1	K OJ	L, in 55 Pn .9	5.5	r, in Fy	1.6	KL/r =< 25 OK Ag	? 16.78	AISC Specification Commentary Table C+0-7.1 L = last bolt on brace to first bolt on guaset plate AISC Specification J-4.4(a) phi Ph > Ru? OK	
KL/r 2.23 phi Pn 755.1 Bearing strength of the WV Block shear rupture strength of the WT sections	K Dhi C	L, in 55 Pn .9	5.5 839	r, in Fy	1.6 50	KL/r =< 25 OK Ag	?	ASC Specification Commentary Table C-A-7.1 L - last holic on brace to first bolic on guasset plate AISC Specification J4.4(a) ph Pa > Ru? OK	
KL/r 2.23 phi Pn 755.1 Bearing strength of the WT Block shear rupture strength of the WT sections Tensle rupture strength of the	K phi c	L, in 55 9 9	5.5 839	r, in Fy	1.6 50	KL/r =< 25 OK Ag	?	AISC Specification Commertary Table (-A-7.1) L = last bolt on brace to first bolt on gusset plate AISC Specification J4.4(a) phi Ph > Ru7 OK	
KL/r 2.23 phi Pn 755.13 Bearing strength of the WT Biock shear nupture strength of the WT sections Tensile rupture strength of the brace An, in? 300	K phi c	L, in 35 .9 9 dh, in	5.5 839	r, in Fy tw, in	1.6 50 0.525	KL/r =< 25 OK Ag	?	AISC Specification Commentary L= last bolt on brace to first bolt on gusset plate AISC Specification J4.4(a) plu Pin > Nu? OK	
kL/r 2.23 phi Pn 755.1.3 Bearing strength of the WT Block hear rupture strength of the WT Block hear rupture strength of the WT Strength of the Strength of th	K phi c Ag in^2 t, in 0.j	L, in 55 9 Pn 9 dh, in 12 b f, in 16	5.5 839 1.0625 14.6	r, in Fy tw, in d, in	1.6 50 0.525 14.3	KL/r =< 25 OK Ag t w, in	? 16.78 0.525	ASC Specification Table C+0.7.1 L-1 ast holiton brace to first bolt and specification ASC Specification J4.4(a) pH Pa > Ru? OK	
KL/r 2.23 phi Pn 755.1 Bearing strength of the VT Tensile rupture strength of the VT 30.82 x Strength of the 30.82 x Strength	K phi c Ag, in^2 t, in 0, xbar, in 2, phi 2,	L, in 55 .9 Pn .9 dh, in 12 b f, in 16 1 Pn, kips	5.5 839 1.0625 14.6	r, in Fy tw, in d, in Fu, ksi	1.6 50 0.525 14.3	KL/r =< 25 OK Ag t w, in	? 16.78 0.525	ASC Specification Table C-A-7.1 L- last bolt on brace to first bolt on guasset plate ASC Specification J-4.4(a) pH Po > Nu? OK	
KL/r 2.23 phi Pn 755.1 Bearing strength of the WT Tensile rupture strength of the brace brace brace brace brace brace brace control of the brace brace brace control of the brace brace control of the brace control of the control of the	K phi c Ag, in^2 t,f, in 0, xbar, in 2, phi 0,	L, in 55 9 Pn 92 61, in 16 11 12 15	5.5 839 1.0625 14.6 12 1516.22	r, in Fy tw, in d, in Fu, ksi	1.6 50 0.525 14.3 65	KL/r =< 25 OK Ag t w, in Ae, in^2	? 16.78 0.525 23.33	ASC Specification Commentary Table C-A-7.1 L last boit on brace to first boit on guasset plate ASC Specification J4.4(a) pM Po > Ru? OK	
KL/r 2.23 phi Pn 755.13 Bearing strength of the WT Becions Stock shear rupture strength of the WT Becions Torolle rupture strength of the brace An, in*2 2.33 phi Pn, kips U 0.755 phi Pn, kips consection- bara and consection interface forces e, in	K phi C Ag, in^2 : t f, in 0. x bar, in 2. phi 0. e.c. in	L, in 55 9 Pn 16 of, in 17 17 17 17 17 17 17 17 17 17	5.5 839 1.0625 14.6 12 1516.22 degree	r, in Fy tw, in d, in Fu, ksi	1.6 50 0.525 14.3 65	KL/r =< 25 DK Ag t w, in	? 16.78 0.525 23.33	ASC Specification Commantary Table C-A-7.1 L-Iast bolt on brace to first bolt on guaster plate AISC Specification 14.4(a) phP n> Ru? OK	
KI/r 2.23 phi Pn 755.1 Bearing strength of the WT Block shear rupture strength of the VT strong of the brace An, in ² 30.82 x bar, in 30.82 x	К phi C Ag, in^2 : t f, in 0. x bar, in 2. phi 0. e c, in 6.	L, In 55 9 Pn 92 b f, In 12 5 F, Kips 55	5.5 839 1.0625 14.6 12 1516.22 46.1	r, in Fy tw, in d, in Fu, ksi	1.6 50 0.525 14.3 65	KL/r =< 25 OK Ag t w, in Ag, in*2	? 16.78 0.525 23.33	ASC Specification Commantary Table C-A-7.1 L - last boil on brace to first boit on guaster plate AISC Specification 1/4.4(a) phi Pa > Ru? OK	

alpha, in	beta, in													
11.8 r, in	alpha, in	9.25	e c, in		beta, in		e b, in							
27.0 V ub. kips	e b. in	11.8	r. in	6.55	Pu, kips	9.25		10.55						
207.15	bases la	10.55		27.0	Dec bies	530.06								
V UC, KIPS 181.62	beta, in	9.25	r, in	27.0	Pu, Kips	530.06								
H ub, kips 231.69	alpha, in	11.8	r, in	27.0	Pu, kips	530.06								
H uc, kips 128.61	e c, in	6.55	r, in	27.0	Pu, kips	530.06								
**Draw the force														
at the gusset-to-														
beam interface	width of the		thickness o	of the										
l w, in 20.38	gusset plate	, in 22	end-plate,	in 0.625	corner cli	p, in 1								
Stresses at the														
gusset-to-beam														
f uv, kip/in	H ub, kips		lw											
11.37 f ua, kip/in	2 V ub, kips	31.69	lw	20.38										
10.17 f.ur. kin/in	fuv.kin/in	07.15	fua.kin/in	20.38										
15.25		11.37		10.17										
strength per inch														
of weld f ur, kip/in -	weld ductili	y												
adjusted 19.07	factor	1.25	f ur, kip/in	15.25										
Required fillet														
lines of weld														
D min, sixteenths	f ur, kip/in		weld stren kip/in	gth,										
5.42		19.07		1.392	fillet wel	is to								
					connect t	he ate to								
Use double-sided		6	/16		the beam	1								
Gusset rupture														
at weld Shear rupture														
strength of the gusset plate														
phi Rn, kips/in	phi		Rn, kips	65	Fu, ksi	65	t gusset, ir	۰.						
39		0.0		00				1						
25 Yielding of the		0.0		05				1						
Yielding of the gusset Shear yielding		0.0		05				1						
Yielding of the gusset Shear yielding strength of the		0.6						1						
Yielding of the gusset Shear yielding strength of the gusset plate phi Rn, kip/in	phi	0.6	0.6*Rn, ksi	i	lw, in		phi Rn > f	± ur?			phi Rn > V u	ıb?		
Yielding of the gusset Shear yielding strength of the gusset plate phi Rn, kip/in 30	phi	1	0.6*Rn, ksi	i 30	l w, in	1	phi Rn > f OK	L UI?	l b, in		phi Rn > V u OK	ıb?		
Yielding of the gusset Shear yielding strength of the gusset plate phi Rn, kip/in 30 Beam web local yielding	phi	1	0.6*Rn, ksi	i 30	l w, in	1	phi Rn > f OK	1 ur?	I b, in	20.38	phi Rn > V u DK	ıb?		
Yielding of the gusset Shear yielding strength of the gusset plate phi Rn, kip/in yielding phi Rn, kips 502 03	phi	1	0.6*Rn, ksi Rn, kips	i 30	l w, in Fyw, ksi	1	phiRn>f OK tw,in	ur? k des, in 0.43	1 b, in	20.38	phi Rn > V u OK E, ksi	i b? Fyw, ksi	tf, in	phi Rn > Vub?
Vielding of the gusset Shear yielding strength of the gusset plate phi Rn, kip/in 30 Beam web local yielding phi Rn, kips 502.03	phi	1	0.6*Rn, ksi Rn, kips	i 30 502.03	l w, in Fyw, ksi	1	phiRn>f OK tw, in	r? k des, in 0.43	1 b, in 1.19 t f, in	20.38	phi Rn > V u DK E, ksi	ib? Fyw, ksi 29000	tf, in 50	phi kn > V ub? 0.685 OK
Vielding of the gusset Shear yielding strength of the gusset plate phi Rn, kip/in 80 Beam web local yielding phi Rn, kips 502.03 Beam web local crippling	phi	1	0.6*Rn, ksi Rn, kips	i 30 502.03	l w, in Fyw, ksi	1	phiRn > f OK tw, in	ur? k des, in 0.43	1 b, in 1.19 t f, in	20.38	phi Rn > V u DK E, ksi	1 6? Fyw, ksi 29000	t f, in 50	phi kn > V ub? 0.685 OK
Vielding of the gusset Shear yielding strength of the gusset piate phi Rn, kips S02.03 Beam web local vielding phi Rn, kips S02.03 Beam web local crippling phi Rn, kip	phi phi phi	1	0.5°Rn, ksi Rn, kips Ru	i 30 502.03 548.72	l w, in Fyw, ksi L w, in	1 50 0.43	phiRn>f OK tw, in	r? k des, in 0.43 d, in 20.38	1 b, in 1.19 t f, in 21.1	20.38 1 0.685	phi Rn > V u OK E, ksi	167 Fyw, ksi 29000	tf, in 50	phi fin > V ub? 0.685 OK
Vielding of the gusset Shear yielding strength of the gusset plate phi Rn, kip/in 30 Beam web local yielding phi Rn, kip ghi Rn, kip 11.54 Weld between	phi phi phi	1	0.6*Rn, ksi Rn, kips Ru	i 30 502.03 548.72	l w, in Fyw, ksi t w, in	1 50 0.43	phi Rn > f OK tw, in I b, in	1 k des, in 0.43 d, in 20.38	l b, in 1.19 t f, in 21.1	20.38 0.685	phi Rn > V u DK E, ksi	ib? Fyw, ksi 29000	tf, in 50	phi IIn > V ub? 0.685 OK
Vielding of the gusset Shear yielding strength of the gusset plate phi Rn, kip/in yielding phi Rn, kips 502.03 Beam web local yielding phi Rn, kip 411.54 Weld between the gusset and the end plate	phi phi	1	0.6*Rn, ksi Rn, kips Rn	i 30 502.03 548.72	lw, in Fyw, ksi tw, in	1 50 0.43	phi Rn > f OK t w, in I b, in	1 ur? 0.43 d, in 20.38	I b, in 1.19 t f, in 21.1	20.38	phi Rn > V u DK E, ksi	i b? Fyw, ksi 29000	t f, in 50	phi kn > V ub? 0.685 OK
23 29 29 29 29 20 20 20 20 20 20 20 20 20 20	phi phi piii height of th	0.0 1 0.75 e	0.6*Rn, ksi Rn, kips Rn	i 30 502.03 548.72	l w, in Fyw, ksi L w, in	1 50 0.43	phi Rn > f OK t w, in	۲ k des, in 0.43 یل in 20.38	1 b, in 119 11, in 21.1	20.38	phi Rn > V u OK E, ksi	1 67 Fyw, ksi 29000	tf, in S0	phi kn > V ub? 0.685 OK
33 Vielding of the gast Shear yielding strength of the gasset plate phi Rn, lippi 30 Beam web local origpling phi Rn, lippi 502.03 Beam web local origpling phi Rn, lippi 411.54 Weld between the gusset and the end plate liw, in fux, kip/n	phi phi phi height of th gusset plate V uc, kio	0.6 1 0.75 e , in 17.5	0.5*Rn, ksi Rn, kips Rn corner clip	i 30 502.03 548.72 i, in 1	l w, in Fyw, ksi t w, in	1 50 0.43	phiRn>f OK tw, in I b, in	ur? 0.43 ^k des, in 20.38 ^{d, in}	i b, in 119 11, in 211	20.38 0.685	phi Rn > V u DK E, ksi	њ? Рум, кзі 29000	tf, in 50	phi Rn > V ub? 0.685 OK
23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	phi phi phi height of th gusset plate V uc, kip	0.00 1 0.75 e , in 17.5 81.62	0.5*Rn, ksi Rn, kips Rm corner clip I w, in	i 30 502.03 548.72 i, in 1 16.5	l w, in Fyw, ksi L w, in	1 50 0.43	phiRn>f OK tw, in I b, in	ur? k des, in 0.43 20.38 d, in	i b, in 1.19 tf, in 21.1	20.38 0.685	phi Rn > V u DK E, ksi	њ? Рум, кзі 29000	tf, in 50	phi Rn > V ub? 0.685 OK
23 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20	phi phi plii height of th gusset plate V uc, kip H uc, kip	0.0 1 0.75 e 17.5 81.62 28.61	0.5*Rn, ksi Rn, kips Rn corner clip I w, in I w, in	i 30 502.03 548.72 16.5 16.5	l w, in Fyw, ksi L w, in	1 50 0.43	phiRn > f OK tw, in	۲ k des, in 0.43 20.38	i b, in 1.19 tf, in 21.1	20.38 1 0.685	phi Rn > V u ok E, ksi	њ? Рум, кај 29000	tf, in 50	phi Rn > V ub? 0.685 OK
23 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20	phi phi plii beight of th gusset plate V uc, kip H uc, kip fuv, kip/in	0.8 1 0.75 e , in 17.5 81.62 28.61 11.01	0.5*Rn, ksi Rn, kips Rn corner clip I w, in I w, in f ua, kip/in	i 30 502.03 548.72 16.5 7.79	lw, in Fyw, ksi tw, in	1 50 0.43	phi Rn > f OK t w, in	۰ k des, in 0.43 یل in 20.38	i b, in 1.19 tî, in 21.1	20.38 1 0.685	phi Rn > V u DK E, ksi	167 Fyw, ksi 23000	tf, in 50	phi ftn > V ub? 0.685 OK
23 Vielding of the gasset gasset plate plate, kip/in gasset plate plate, kip/in gasset plate plate, kip/in gasset plate plate, kip/in gasset plate gasset plat	phi phi phi height of th gusset plate V uc, kip H uc, kip fuv, kip/in	0.0 1 0.75 e , in 17.5 81.62 28.61 11.01	0.6*Rn, ksi Rn, kips Ru corner clip I w, in I w, in f ua, kip/in	i 30 502.03 548.72 , in 1 16.5 16.5	Iw, in Рүw, ksi	1 50 0.43	phi Rn > f	ی kdes, in 0.43 20.38	i b, in 1.19 t f, in 21.1	20.38 1 0.685	phi Rn > V L	167 Fyw, ksi 23000	tf, in 50	philtr > Vub? 0.695 OK
23 Vielding of the gusset gusset plate plate, skip/in gusset plate plate, skip/in gusset plate plate, skip/in guiter, skip blate, skip state, skip st	phi phi phi height of th gusset plate V uc, kip fuv, kip/in weld ductiii	0.0 1 0.75 e , in 17.5 81.62 28.61 11.01	0.6*Rn, kips Rn, kips corner clip I w, In I w, In I w, In T ua, kip/In	i 30 502.03 548.72 i, in 1 16.5 16.5	Iw, in Руw, ksi tw, in	1 50 0.43	phi Rn > f OK t w, in	۳ kdes, in 0.43 20.38	i b, in 1.19 t f, in 21.1	20.38 1 0.685	phi Rn > V v	ib? Fyw, ksi 29000	t f, in 50	phi In > V ub? 0.685 OK
23 24 Welding of the gaster gaster gaster pix Rn, kip/in gaster gaster pix Rn, kip/in gaster g	phi phi plii height of th gusset plate V uc, kip H uc, kip fuv, kip/in weld ductili factor	0.0 1 0.75 0.75 8 17.5 81.62 28.61 11.01 Fy 1.25 1	0.6*Rn, ksi Rn, kips Ru I w, in I w, in I w, in I u, kip/in	502.03 502.03 548.72 16.5 7.79	lw, in Fyw, ksi Lw, in	1	phi Rn > f OK t w, in	۳ ۲ ۸ k des, in 0.43 20.38	i b, in 1.19 tf, in 21.1	20.38 1 0.685	phi Rn > V v	ib? Fyw, ksi 29000	t f, in 50	phi In > V ub? 0.685 OK
23 Welding of the gusset gusset pix Rn, kip/in gusset plate pix Rn, kip/in gusset plate pix Rn, kip/in guit Rn, kip pix Rn, kip fux, kip/in 11.00744965 fux, kip/in 11.00744965 fux, kip/in 13.49 Required strendb per Inch fur, kip/in 14.40 Strendb per Inch fur, kip/in 15.5 fur, kip/in 13.49 Required strendb per Inch fur, kip/in 14.40 Strendb per Inch fur, kip/in fur, kip/in 15.5 fur, kip/in 15.5 fur, kip/in 15.5 fur, kip/in 16.5 fur,	phi phi phi yiii Yuc, kip tuc, kip tuc, kip fuv, kip/in weld ductil	1 0.75 e 17.5 81.62 28.61 11.01 12.5	0.6*Rn, kii Rn, kips Rm I w, in I w, in I w, in I w, in I w, kip/in	502.03 502.03 548.72 16.5 16.5 7.79	lw, in Fyw, ksi	1	phi Rn > f OK tw, in	ur? 0.43 20.38	i b, in 1.19 tf, in 21.1	20.38	phi Rn > V s	ib? Fyw, ksi 25000	t f, in 50	phi IIn > V ub? Q.685 OK
23 Welding of the guster guster guster glate guster glate guster glate guster glate guster glate guster glate guster, lop/in guiter, skip plit Rin, skip guiter, skip (in, skip) 11.00744985 (in, skip/in 11.00744985 (in, skip/in 13.408 Required strength per inch fur, kip/in 15.86 Load angle with respect to the longthulting also	phi phi phi guss plate yuu, kip tuu, kip fuu, kip/in fuu, kip/in fuu, kip/in	1 0.75 0.75 0.75 81.62 28.61 11.01	0.6*Rn, ksi Rn, kips Rn Iw, in Iw, in Iw, in fus, kip/in fus, kip/in	502.03 502.03 548.72 16.5 16.5 7.79 13.49	lw, in Fγw, ksi tw, in	1 50 0.43	phiftosf OK tw, in	۳ 4 k des, in 0.43 d, in 20.38	i b, in 119 tf, in 21.1	20.38	bhi Rn > V s	ıb? Fyw, ksi 25000	t f, in 50	phi Itn > V ub? 0.685 OK
23 24 24 24 24 24 24 24 24 24 24	phi phi yiii yux, kip tuc, kip tuc, kip tuc, kip tuc, kip tuc, kip/in tuc, kip/in	1 0.75 e, in 17.5 81.62 28.61 11.01 11.01	0.6*Rn, ksi Rn, kips Ru I w, in I w, in I w, in f us, kip/in	30 502.03 548.72 16.5 7.79 13.49	lw, in Fγw, ksi	1 50 0.43	philtosf OK tw, in	u? 0.43 20.38 , in	i b, in 1.19 tf, in 21.1	20.38	phi Rn > V t OK	467 Fyw, ksi 25000	t f, in 50	phi kn > V ub? 0.685 OK
23 Weiding of the guster Shear yielding Shear yielding 30 Beam web local opin Rn, lupin 502.03 Beam web local opin Rn, lupin 502.03 Beam web local cippling pin Rn, lupin 502.03 Beam web local cippling pin Rn, lupin 11.00744985 fur, kip/in 13.40 fur, kip/in 13.4046385 fur, kip/in 13.4046385 fur, kip/in 16.86 Log angle with respect to the longtuintial asi of the weld group thets, degree 34.262	phi phi pii Huc, kp 1 Huc, kp/in weld ductili	1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	0.6*Rn, ksi Rn, kips Rn I w, in I w, in I w, in I w, in I w, in Y uc, kip/in	i 30 502.03 548.72 , in 1 16.5 7.79 13.49	lw, in Fyw, ksi	1 50 0.43	philtos f OK tw, in ib, in	u? 0.43 ^k des, in 20.38 ^{d, in}	i b, in 119 tf, in 211	20.38	ahi Rn > V t OK	467 Fyw, ksi 25000	tf, in 50	phi fin > V ub? 0.685 OK
23 23 24 24 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	phi phi phi vrii Vuc, kip Muc, kip factor III uc, kip/in 1	1 0.75 8 17.5 81.62 28.61 11.01 1.25 28.61	0.6*Rn, kci Rn, kips Rn I w, in I w, in	i 30 502.03 548.72 , in 1 16.5 16.5 13.49	Iw, in Fyw, ksi	1	philito > f OK tw, in	ur? 0.43 20.38 ^{d, in}	i b, in 119 tř. in 211	0.685	ahi Rn > V s	167 Fyw, ksi 23000	tf, in 50	phi fin > V ub? 0.685 OK
23 Vielding of the gusset gusset plate phi Rn, kip/in gusset plate phi Rn, kip/in full, kip full, kip full, kip full, kip/in full,	phi phi phi phi Huc, kip fuv, kip/in Huc, kip/in Huc, kip/in	1 0.75 0.75 81.62 28.61 11.01 1.25 28.61	0.6*Rn, ki Rn, kips Rn I w, in I w, in I w, in I w, in I w, kip/in V w, kip/in	502.03 502.03 548.72 16.5 16.5 13.49	lw, in Fyw, ksi	1	phi Rn > f	۳ kdes, in 0.43 20.38	i b, in 1.19 t f, in 21.1	0.685	phi Rn > V (DK	167 Fyw, ksi 23000	t f, in 50	phi In > V ub? 0.695 OK
23 24 Welding of the gasset gasset plate plate, sip/in gasset plate plate, sip/in gasset plate plate, sip/in gasset plate plate, sip/in gasset plate the gasset and the gasset an	phi phi phi height of th gusset plate gusset plate gusset plate gusset plate gusset plate fur, kip/in fur, kip/in fur, kip/in liuc, kip	1 0.75 0.75 8 1.01 11.01 1.25 28.61	0.6*Rn, kij Rn, kips Rn I w, in I w, in I w, in I w, in I w, kip/in V uc, kip/in	502.03 502.03 548.72 16.5 16.5 7.79 13.49	lw, in Fyw, ksi	1	phi Rn > f OK tw, in	" 0.43 20.38	i b, in 1.19 t f, in 21.1	20.38	phi Rn > V (k	467 Fyw, ksi 29000	t f, in 50	phi In > V ub? 0.685 OK
23 24 24 ding of the gasset gasset pil Rn, kip/in pil Rn, kip/in pil Rn, kip pil Rn, kip soc.os 20 20 20 20 20 20 20 20 20 20 20 20 20	phi phi phi keight of thi gusse plate V uc, kip fuv, kip/in fuv, kip/in 11 uc, kip/in 1 11 uc, kip/in	1 0.75 e , in 17.5 81.62 28.61 11.01 28.61 1.25 28.61	0.6*Rn, kil Rn, kips Rn I v. I w, in I w, in V uc, kip/in V weld stren kip/in	30 502.03 548.72 , in 1 16.5 7.79 13.49 181.62 gth,	lw, in Fyw, ksi	0.43	phi Rn > f	" 0.43 20.38	1 b, in 1.19 t f, in 21.1	20.38	hi Rn > V (k	ib? Fyw, ksi 29000	t f, in 50	phi In > V ub? 0.685 OK
23 24 Welding of the gasset gasset plate plate, kip/in gasset plate plate, kip/in gasset plate plate, kip/in gasset plate gasset plate gasset plate fur, kip b fur, kip b fur, kip l fur, kip l fu	phi phi phi yhi Huc, kip 1 fuy, kip/in fuy, kip/in 1 fuy, kip/in 1 fuy, kip/in	1 0.75 e , in 17.5 881.62 28.61 11.01 1.25 28.61 16.86	0.6*Rn, kii Rn, kips Rn I w, in I w, in V uc, kip/in V uc, kip/in	30 502.03 548.72 , in 1 16.5 7.79 13.49 181.62 gth, 1.392	l w, in Fyw, ksi t w, in	1 50 0.43	phi Rosf OK tw, in I b, in	ur? 0.43 20.38	1 b, in 1 19 t, in 21.1	20.38	, ksi	ib7 Fyw, kii 29000	t f, in 50	phi In > V ub? 0.685 OK
23 24 Welding of the gusset parts and the server leading parts and the server leading the server leading the server leading the server leading the server leading the server leading the server leading the server leading the server leading	phi phi phi yii Yuc, kip fuy, kip/in Huc, kip/in Huc, kip/in fuy, kip/in	1 0.75 8 , in 17.5 81.62 28.61 11.01 1.25 28.61 16.86	0.6*Rn, kii Rn, kips Rn I w, in I w, in I w, in I w, in I w, in I w, in I w, in V uc, kip/in V uc, kip/in	548.72 548.72 16.5 7.79 13.49 181.62 gth, 1.392	I w, in Fyw, ksi t w, in fillet weld	1 50 0.43 ds to he ate to	phi Rosf OK tw, in	ur? 0.43 20.38	1 b, in 1 19 t, in 21 1	20.38	in s V t	ib? Fyw, ksi 29000	t f, in 50	phi IIn > V ub? 0.685 OK

Check gusset rupture at gusset-toend plate weld phi Rn, kip/in Ru, kip/in phi Rn > Ru ? 30 13.49 OK 30 13.49 OK Design the weld between the beam and the end plate component at the beam-to-end plate interface Vub+Vubeam, Vubeam, kip 210.24 207.15 30.09 minimum double sided fillet weld b, sixteenths b, sixteenths Check Beam web 4.11 Check Beam web rupture sternigh at weld phi Rn Rn, kip Fu, kii Anv phi Rn > Ru ? 23.11.1 308.14875 65 7.90125 OK Design the weld beam fianges beam fianges and ten end plate Horizontal plate Horizontal Amplified Axial force in the collector force, Hu, kip component at the gusset-to-link, Hu collown -149.54 -30.28 128.61 D, sixteenth -15.14 -0.88 Check beam flange rupture at weld phi Rn, kip Rn, kip Fu, ksi Ae, in*2 276.17 368.22 [#] 65.00 bf, in 5.66 tf, in 8.27 0.69 Design end-plate bolts n b bots ruv, kips/bolts Vuc, kips Vbu, kp Vubeam, kip 10 38.57 181.62 207.15 3.09 rv ruv Abolts 49.31357.176 38.57 0.785 Prit Frit, kai Frv 7.82 90 54 phirnt, kip phi Prit Ab hirt, kip phi Prit Ab 4.60 5.866047061 0.785 Rut -3.78

2.3 SPECIAL MOMENT FARME

SPECIAL MOMENT DESIGN

Seismological	
Information	
Seismic Design	
Category	
R	

Category	D	le	1.25
R		8 S DS	1
Omega		3 rho	1.3
		R M for Special	
Cd		5.5 Moment Frame	1

Beam		Column	
Size	w24x84	Size	w14x257
Fy	50 k	si Fy	50 ksi
Fu	65 k	si Fu	65 ksi
	4	AISC Seismic	
	F	Provisions Table	
Ry	1.1 4	A3.1 Ry	
E	29000 k	si E	29000 ksi
Geometric Property			
A	24.7 i	n^2 A	75.6 in^2
d	24.1 i	n d	16.4 in
t,v	0.47 i	n t _w	1.18 in
b _f	9.02 i	n b _f	16 in
t _f	0.77 i	n t _f	1.89 in
k _{det}	1.6875 i	n k _{det}	3.1875 in
K _{des}	1.27 i	n k _{des}	2.49
k,	1.0625 i	n k ₁	1.8125 in
b₁/2t₁	5.86	b,/2t	4.23
h/t _w	45.9	h/t _w	9.71
I _x	2370 i	n^4 l _x	3400 in^4
Z _x	224 i	n^3 Z _x	487 in^4
h₀	23.3 i	n h _o	14.5 in^3
r_{x}	9.79 i	n r _x	6.71 in
r _v	1.95 i	n r _v	4.13 in
AISC Manual Table	3.	, L	
2		R ₁	1.8125 in

Lp		6.89	ft	р	kips^-1
Lr phi Vp		20.3	ft	bx	kip-ft^-1
RBS Dimensions		340	кips	ру Цр	kip-tt^-1
a		5.5	in	phi Pn	2010 kips
b		18	in	phi Mpx	1200 kip-ft
С		2	in	phi Vn	378 kips
R		21.25	in	d z/ 90	0.251 in
Z RBS		152.14	in^3	w z/ 90	0.14 in
Total Cut, III		4		(uz+wz)/90 t>	0.59
				(dz+wz)/90?	ОК
Single Angle Kicker				Plate	
			AISC Steel		
Sizo	15.5.5.6 (10		Manual Table 4-		
phi Pn	L5X5X5/10	21.7	12 kips	Ev	50 kci
A		3.07	in^2	Fu	65 ksi
E		29000	ksi	Thickness	1 in
Beam Span		31.75	ft	Width	6 in
_					
Beam Beam Donth			< 11/26		
Beam Depth Beam Weight	w24x84 w24x84		< 100 nlf		
Beam Flange	W24704		300 pi		
Thickness		0.77	< 1.75 in		
Clear Spand-to-Depth			74 0145		
Ratio of the Beam		15.13	> / for SMF		
Gravity Loads on the					
Beam					
w D		0.840	kip/ft		
wL		0.600	kip/ft		
		0.000			
		0.000			Allowable
ASCE/SEI & Eq. 12.8-		0.000	Story	Deflection at	Allowable Story Drift, in,
ASCE/SEI & Eq. 12.8- 15	Story Heights, ft	0.000	Story Displacement, in	Deflection at level x, dx (in)	Allowable Story Drift, in, 0.020*hx
ASCE/SEI & Eq. 12.8- 15 Roof	Story Heights, ft	24	Story Displacement, in 0.703	Deflection at level x, dx (in) 0.139	Allowable Story Drift, in, 0.020*hx 5.76 2.5208
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor	Story Heights, ft	24 14.67 14.67	Story Displacement, in 0.703 0.563 0.469	Deflection at level x, dx (in) 0.139 0.482 0.365	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor	Story Heights, ft	24 14.67 14.67 14.67	Story Displacement, in 0.703 0.563 0.469 0.416	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor	Story Heights, ft	24 14.67 14.67 14.67 17	Story Displacement, in 0.703 0.563 0.469 0.416 0.482	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor	Story Heights, ft	24 14.67 14.67 14.67 17	Story Displacement, in 0.703 0.563 0.469 0.416 0.482	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear	Story Heights, ft	24 14.67 14.67 14.67 17	Story Displacement, in 0.703 0.563 0.469 0.416 0.482	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V R V 4 V 3	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421 96	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V R V 4 V 3 V 2	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V A V 3 V 2 V 2 V 1	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 2 V 1	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design <	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift?	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability	Story Heights, ft	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips	Story Heights, ft OK Ax, ft^2	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check Hole Story 2820	Story Heights, ft OK Ax, ft^2	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum nermitted these:	Story Heights, ft OK Ax, ft^2	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum permitted theta, theta < theta max?	Story Heights, ft OK Ax, ft^2	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum permitted theta, theta < theta max?	Story Heights, ft OK Ax, ft^2	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum permitted theta, theta < theta max? SMF Column	Story Heights, ft OK Ax, ft^2 OK	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum permitted theta, theta < theta max? SMF Column Strength Check	Story Heights, ft OK Ax, ft^2 OK	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum permitted theta, theta < theta max? Strength Check Axial Strength with	Story Heights, ft OK Ax, ft^2	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum permitted theta, theta < theta max? <u>SMF Column</u> <u>Strength Check</u> Axial Strength with amplified seismic	Story Heights, ft OK Ax, ft^2 OK	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum permitted theta, theta < theta max? <u>SMF Column</u> <u>Strength Check</u> Axial Strength with amplified seismic load Pu, kips	Story Heights, ft OK Ax, ft^2 OK	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08
ASCE/SEI & Eq. 12.8- 15 Roof 4th Floor 3rd Floor 2nd Floor 1st Floor Story Shear V R V 4 V 3 V 2 V 1 Design Story Drift delta design < allowable story drift? Frame Stability Px, kips 2820 Check the maximum permitted theta, theta < theta max? Strength Check Axial Strength with amplified seismic load Pu, kip	Story Heights, ft OK Ax, ft^2 OK	24 14.67 14.67 14.67 17 128.79 776.40 1421.96 1879.48 2048.66 9000	Story Displacement, in 0.703 0.563 0.469 0.416 0.482 kips kips kips kips kips kips	Deflection at level x, dx (in) 0.139 0.482 0.365 -0.066 0.482	Allowable Story Drift, in, 0.020*hx 5.76 3.5208 3.5208 4.08

Axial and Flexural		
Strength with seismic		
effects		
Pu, kip	138.642	
Vu, kip	15.615	
Mu, top, ft-kip	61.8187	
Mu, bottom, ft-kip	123.3063	
Column Element		
Slenderness	AISC Seismic Provisions	Table D1.1
Available		
Compressive		
Strength. kips. Pu <		
phi Pn ?	ОК	
Combined Loading		
Check	OK	
Available Shear		
Strength Vu < nhi Vn		
o o o o o o o o o o o o o o o o o o o	OK	AISC Table 3-2
•	ÖK	AISC TABLE 3-2
SME Boom Strongth		
Sivir Deam Strength		
Check		
Communication of the		
Governing load at		
the face of the		
column		
Vu, kip	67.687	
Mu, ft-kip	563.5435	
Governing load at		
the centerline of the		
RBS		
Mu, ft-kip	563.5435	
RBS Dimensions		
Check		
0.5b bf < a < 0.75 b bf		0.1 b bf < c <
2		
?	0.65d < b < 0.85 d?	0.25 b bf
?	0.65d < b < 0.85 d?	0.25 b bf
?	0.65d < b < 0.85 d?	0.25 b bf
ок	0.65d < b < 0.85 d?	O.25 b bf
? OK lamda f < lamda hd?	0.65d < b < 0.85 d? OK lamda w < lamda hd ?	0.25 b bf
? OK lamda f < lamda hd? OK	0.65d < b < 0.85 d? OK lamda w < lamda hd ? OK	0.25 b bf OK
? OK lamda f < lamda hd? OK Spacing of Lateral	O.65d < b < 0.85 d? OK lamda w < lamda hd ? OK	0.25 b bf ОК
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max	0.65d < b < 0.85 d? OK lamda w < lamda hd ? OK	0.25 b bf OK
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ?	O.65d < b < 0.85 d? OK lamda w < lamda hd ? OK	0.25 b bf OK
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural	O.65d < b < 0.85 d? OK lamda w < lamda hd ? OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr	0.65d < b < 0.85 d? OK lamda w < lamda hd ? OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ?	O.65d < b < 0.85 d? OK lamda w < lamda hd ? OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and	0.65d < b < 0.85 d? OK lamda w < lamda hd ? OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural	O.65d < b < 0.85 d? OK lamda w < lamda hd ? OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS	0.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mag@	0.65d < b < 0.85 d? OK lamda w < lamda hd ? OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ PBS 2	0.65d < b < 0.85 d? OK lamda w < lamda hd ? OK OK	0.25 b bf OK
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and	O.65d < b < 0.85 d? OK lamda w < lamda hd ? OK OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Decuired Flexural	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face	0.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu <	0.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK	0.25 b bf OK
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ?	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ?	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK OK	0.25 b bf OK
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial	O.65d < b < 0.85 d? OK OK OK OK OK	0.25 b bf
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial Strength of the Single	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK OK	0.25 b bf OK AISC Steel
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial Strength of the Single Angle, Purb < phi Pn	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK OK	0.25 b bf OK AlSC Steel Manual Table 4-
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial Strength of the Single Angle, Purb < phi Pn ?	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK OK OK	0.25 b bf OK AISC Steel Manual Table 4- 12
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial Strength of the Single Angle, Purb < phi Pn ? Probable Maximum	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK OK	0.25 b bf OK AISC Steel Manual Table 4- 12
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial Strength of the Single Angle, Purb < phi Pn ? Probable Maximum Moment at the	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK OK	0.25 b bf OK AISC Steel Manual Table 4- 12
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial Strength of the Single Angle, Purb < phi Pn ? Probable Maximum Moment at the Center of RBS, C pr <	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK OK OK	0.25 b bf OK AISC Steel Manual Table 4- 12
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial Strength of the Single Angle, Purb < phi Pn ? Probable Maximum Moment at the Center of RBS, C pr < 1.2?	O.65d < b < 0.85 d? OK Iamda w < Iamda hd ? OK OK OK OK OK	0.25 b bf OK AISC Steel Manual Table 4- 12
? OK lamda f < lamda hd? OK Spacing of Lateral Bracing, Lb < Lb max ? Available Flexural Strength, Lp < Lb < Lr ? Available and Required Flexural Strength at Centerline of RBS, Mu@RBS < phi Mn@ RBS ? Available and Required Flexural Strength at the Face of the Column, Mu < phi Mn ? Available Shear Strength, Vu < phi Vn ? Available Axial Strength of the Single Angle, Purb < phi Pn ? Probable Maximum Moment at the Center of RBS, C pr < 1.2?	O.65d < b < 0.85 d? OK lamda w < lamda hd ? OK OK OK OK OK OK	0.25 b bf OK AISC Steel Manual Table 4- 12

SMF Beam-Column Connection Design

Probable Maximum Moment at the Center of RBS, C pr < 1.2? Free Body Diagram of Portion of Beam between RBS Cuts Plastic Moment of	ОК	
the Beam based on the expected yield stress	or AISC Seismic Manual Table 4-2	
Check moment at the face of the column, M f < phi M pe ? Required Shear, Vu, of the Beam and Beam Web-to-	ОК	
Column Connection, Vu < phi Vn ? <u>Beam Web-to-</u> <u>Column Connection</u> Required Minimum Remaining Web	ОК	
Depth, d min < d beam ? d min, in Continuity Plate Requirments min t cf s t cf ?	ОК 5.48	
min t cf > t cf ? Continuity Plate? Trial Thickness of Contiunity Plate, in	OK Not Required	
Minimum Continuity Plate Thickness, in Trial > min t ? Min Contiuity Plate Width, in Trial Width, in Max Contiuity Plate Width, in Double-sided Fillet Weld, D	О.77 ОК 3.92 6 7.41 10.78	CJP groove welds OK sixteenths
Column-Beam Relationship, sum M*pc / sum M*pb > 1.0 ? h t, in h b, in	ОК 7.335 7.335	ft ft
Required Strength of the Panel Zone, Ru Pr < 0.75*Pc ? Doubler Plate Required? Minimum Thickness of Each Component of the Panel Zone, t Thickness of the Plate, t p, in	806.12 Required 0.391 0.025	kips in thick Doubler Plate
Use Use Extend the doubler plate 6 in above and below the beams	0 1 in x 1 in	ni thick boubler Plate Clip

The maximum c	ut, in	Flange Reduction		b _f									
% of the maxim	4.51 um		0.500	Maximum Fl	9.02 age								
cut		Total cut, in		Cut	450								
	89%		4		4.51								
Drift Check										delta design <			
						Allowable			i	allowable story			
Design Story Dr	ift, in	delta xe RBS, in		delta xe, in		Story Drift	:, in	1 10057		drift?	l		
	2.31		0.525		0.482		4.08	12.3.4.2		ок			
									1				
Frame Stability											h		
theta	ent,	Px, kips		Ax. ft^2		delta. in		le	,	Vx. kips	nsx, ft		
C	0.0082	, .	2820		9000		1.75	1.	.25	776.3960314	15		
Theta/(1+theta)		theta											
(ineta)	0.0081	uleta	0.0082										
Check the maxi	mum												
permitted theta	1					theta < th	eta						
Theta max		beta				max?							
				1.0 =									
	0.091		1	conservative	2	OK							
SMF Column													
Strength Check													
(1.2+0.2SDS)*D-	on +rho*												
QE-0.5L+0.2S													
Avial Strength v	vith												
amplified seism	ic												
load													
Pu, kip 19	88 642												
Axial and Flexu	ral												
Strength with so	eismic												
ennects Pu, kip			138.642										
Vu, kip			15.615										
Mu, top, ft-kip Mu, bottom, ft l	kin	1	61.8187										
Column Elemen	nt.	1	23.3003										
Slenderness		AISC Seismic Provi	sions	Table D1.1									
Effective Length	ı												
Kx*Lx/rx		Кх		Lx, ft		rx							
	42.9		1		24		6.71						
Ky*Ly/ry	69.7	ку	1	Ly, ft	24	ry	4.13						
Available	5517		-		27								
Compressive		D 1:		<i>c</i> :		Effective							
Strength, Kips	2010	Pu, kips	138.642	Size w14x257		Length	24	OK	,				
Available Flexur	al	AIGC Manual Table											
Strength, Kip-ft	1200	AISC WANUAL LADIE	: 5-2										
								Pr/2Pc+(Mrx/	/p	Pr/Pc+8/9*(Mrx/			
Combined Load	ing	Interaction of	Flowers	Pr/Pc		Dr/Do - O	, <u>,</u>	hi,b,Mnx+Mr	ry/ I	phi,b,Mnx+Mry/	Dr Dc	Mry May	May May
OK		compression and	0.14	F1/FU	0.07	OK	<u> </u>	prii,o,iviny) 0.	ا 14.	0.16	139 2010	123.31 1200	0 1000
Available Shear		Vu		Vu c nhi Vn	2	AISC Table	a 3_7						
sacingui	378	**	15.615	OK									

SMF Beam Strength Check Load Combination (1.2+0.2SDS)*D+rho* QE-0.5L+0.2S								
Governing load at the face of the column Vu, kip 67.68 Mu, ft-kip 563.543	7		Governing at the cent of the RBS Mu, ft-kip 56	load ærline 3.5435				
RBS Dimensions				[(Dimension Check			
0.5b bf 4.5	a L	5.5	0.75b bf	6.77 ().5b bf < a).75 b bf ? OK	<		
0.65d 15.6	ь 7	18.0	0.85d	20.49).65d < b <).85 d?)K			
0.1b bf	с)	2.0	0.25b bf	2.26 ().25 b bf)K			
K, IN The reduced flange width, in		21.25						
bf, RBS, in 6.7 lamda f 4.3	bf 5 bf, RBS 3	9.02 6.75	R tf	21.25 0.77)	18	2	2
lamda hd 7.2	E 2	29000	Fy	50 (amda f < amda hd? DK			
lamda hd	lamda w = h/tw		lamda w < hd ?	lamda				
59. Spacing of Lateral Bracing)	45.9	OK					
D1.2b Requirement 0.086*ry*E/Fy, ft 8.1: Available Flexural Strength	L b L	7.94	Lb < Lb ma OK	x ?				
Lb 7.937	եր 5	6.89	Lr	ا 20.3 0	.p < Lb < Lr)K	?		
Plastic Section Modulus at the Center of RBS Z RBS, in^3	Zx		с	t	bf	c	ł	
Available and Required Flexural Strength at Centerline of RBS	ł	224		2		0.77		24.1
phi Mn @ RBS, ft-kip 570.538	Mn @ RBS, ft-kip	633.93	Fy	2 50	2 RBS, in^3 152	2.14 (Mu@RBS Mn@ RBS OK	< phi ?
Available and Required Flexural Strength at the Face of the Column								
phi Mn 84	Mp, ft-kip)	933.33	Zx, in^3	224 (Vlu < phi N DK	1n ?		
Available Shear Strength phi Vn, kips	Vu < phi Vn ?							

340 <mark>OK</mark>

Lateral Bracing									
Required Brace Prb, kips	Force	Cd	1	h0	Mr, in-k 23.3	ips Ry 12320	1.1		
Length of the B L, ft	race								
Available Axial Strength of the Angle phi Pn	14.80 Single 21.7	AISC Steel Manual 12 Purb	Table 4 10.58	Purb < phi	Pn ?				
Required Brace					_				
Stiffness beta br, kip/in	74.0	phi	0.75	Mr, in-kips	cd 12320	Lb, in 1	95.25	Fy	Z 50 224
Stiffness of the k, kips/in	Angle 492.87	A, in^2	3.07	E, ksi	L, ft 29000	cos theat 14.80	t ^2 7.47	,	
SMF Beam-Colu Connection Des	umn sign								
Gravity Loads o Beam	on the	w kin/ft						b 0	
Room Doguiron	0.840	w L, KIP/TC	0.600					110	23.3
Beam Depth	nents	w24x84		< W36				beta br < k ?	
Beam Weight Beam Flange		w24x84		< 300 plf				ОК	
Thickness			0.77	< 1.75 in					
Clear Spand-to- Ratio of the Bea	Depth am		15.13	> 7 for SM	F				
Probable Maxie Moment at the Center of BBS	mum								
Cpr		Fy		Fu	C pr < 1	.2?			
Mpr. ft king	1.15	7 DDC	50	D.	65 OK				
wi pi, it-kips	801.92	ZINDO	152.14	пу	1.1				
Shear at the Ce of the RBS at Ea End of the Beau Gravity Load or Beam	enter ach m n the								
w u, kip/ft	1.31	w D, kip/ft	0.840	w L, kip/ft	0.600				
Distance from t Column Face to Center of the R	the o the BS cut								
S h, in		a, in		b, in					
Distance betwe	14.5 een		5.5		18				
Center of RBS of	uts								
Lh, in	336	L, ft	31.75	d col, in	S h, in 16.4	14.5			
V RBS, kip	75.64	Mpr, ft-kip	801.92	L h, in	w u, kip 336	/ft 1.31			
V' RBS, kip		Mpr, ft-kip		L h, in	w u, kip	/ft			
39.06 Free Body Diagram		801.92	336	1.31					
--	--------------------	-------------------------	----------------------	-------------------	--	--------------------			
of Portion of Beam between RBS Cuts									
Probable Maximum Moment at the Face of the Column M f, in-kip	M pr, ft-kip	V RBS, kip	S h, in						
10719.84 M'f in-kin	Mpr ft-kin	801.92	75.64 Shin	14.5					
10189.43		801.92	39.06	14.5					
Plastic Moment of the Beam based on the expected yield	or AISC Seismic M	anual							
stress Mina in kin	Table 4-2	Ev kei	7v inA2						
12320	пу	1.1	50 ZX, III - 5	224					
Check moment at the face of the column M f, in-kip 10719.84	phi M pe	M f < phi M 12320 OK	pe ?						
Required Shear, Vu, of the Beam and Beam Web-to- Column Connection phi Vn 340 Beam Web-to-	Vu, kips	V RBS, kips 77.22	w u, kip/ft 75.64	: S h, in 1.31	Vu < phi Vn ? 14.5 <mark>O</mark> K	-			
Column Connection Required Minimum Remaining Web Depth d min, in	Vu, kips	Fy, ksi 77 22	tw, in 50	Cv 0.47	d min < d beau	m ?			
Continuity Plate Requirments			50						
min t cf, in -						Fyc, mintcf			
Provisions EQ. E3-8	Ryb	Ryc 11	b bf, in	t bf, in	F yb, ksi 0.77	ksi >tcf?			
min t cf, in -		1.1	1.1	5.02	0.77	50 50 OK			
Provisions EQ. E3-9	b bf, in	mintcf>tc	f?						
1.50 Continuity Plate?		9.02 <mark>.0</mark> K							
Not Required									
Trial Thickness of	Minimum Continu	ity	Trial > mir	.+2					
continuity riate, in	riate mickness, in								
1		0.77 CJP groove v	welds OK						
Plate Width, in 2.42									
between Each Continuity Plate and the Column Flange,									
in U	k1	Cornor Clip							
0.69 Min Contiuity Plate		1.8125 Max Contiui	0.5 tv						
Width, in	Trial Width, in	Plate Width,	, , in 7.41 or	_					
3.92 Contact width. in	k1	ь Cornor Clip	7.41 <mark>OK</mark>						
4.2775		1.8125	0.5						

Design Tensile						
Carrow mather Island						
strengtn, кips nhit Tn	nhi t	Ev	Contact	lrea		
384.98	3	0.9	50 4	L2775		
Contact width with		010				
the Web, in	Cornor Clip, in					
7.025	5	4.69				
Design Shear						
Strength of the						
Continity Plate, phi	F	Contact Ai	rea,			
VП, КIPS 210 74	гу	50	7 025			
Design Strength of	,	50	7.025			
the Panel Zone, phi						d b,
Rn, kips	Fy, ksi	d c, in	t w, in	b cf, in	t cf, in	in
794.00)	50	16.4	1.18	16	1.89 24
Tn, kips	Ry	Fy, ksi	b f, in	t f, in		
763.99)	1.1	50	9.02	0.77	
Design Load for						
Column Web Weld						
210.75	5					
Double-sided Fillet						
Weld, D	_					
10.78	sixteenths					
Column-Beam						
Relationship						
sum M*nc in-kin	7 vt in∧3	Fy kei	Puc kins	Δσ in ^ 2	h tin	ab, in hhin
49661.71	2 xt, iii 3	487	50 13	38.642	75.6	288 24 176.04
sum M*pb, in-kip	Mpr, in-kip	Muv, in-ki	p V RBS, kij	os V'RBS, k	ips a, in	b, in dc, in
21849.79)	9623.08 2	2603.62	75.64	39.06	5.5 18 16.4
sum M*pc / sum	sum M*pc / sun	n M*pb >				
M≛bp	1.0 ?					
2.27 Panel Zone Check	7 OK					
2.27 Panel Zone Check Vc, kips	OK M f, in-kip	M' f, in-kip) hb, ft	h t, ft		
2.27 Panel Zone Check Vc, kips 90.12	M f, in-kip	M' f, in-kip 10719.84 10	o h b, ft)189.43	h t, ft 24	14.67	
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone	/ <mark>OK</mark> M f, in-kip	M' f, in-kip 10719.84 10	9 h b, ft 1189.43	h t, ft 24	14.67	
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Bu, kins	M f, in-kip	M' f, in-kip 10719.84 10 d h in	o hb,ft)189.43 tfin	h t, ft 24 Vc. kins	14.67	
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12	OK M f, in-kip sum M f, in-kip	M' f, in-kip 10719.84 10 d b, in 20909.27	o h b, ft)189.43 t f, in 24.1	h t, ft 24 Vc, kips 0.77	14.67 90.12	
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc	7 <mark>OK</mark> M f, in-kip Sum M f, in-kip	M' f, in-kip 10719.84 10 d b, in 20909.27	o h b, ft)189.43 t f, in 24.1	h t, ft 24 Vc, kips 0.77	14.67 90.12	
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips	M' f, in-kip 10719.84 10 20909.27 Fy, ksi	o h b, ft)189.43 t f, in 24.1 Ag, in^2	h t, ft 24 Vc, kips 0.77 Pr < 0.75	14.67 90.12 ;*Pc ?	
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips	M' f, in-kip 10719.84 10 20909.27 Fy, ksi 2835	o h b, ft)189.43 t f, in 24.1 Ag, in^2 50	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 <mark>OK</mark>	14.67 90.12 5*Pc ?	
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips	M' f, in-kip 10719.84 10 20909.27 Fy, ksi 2835	o h b, ft)189.43 t f, in 24.1 Ag, in^2 50	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 <mark>OK</mark>	14.67 90.12 5*Pc ?	
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips	M' f, in-kip 10719.84 10 20909.27 2835 Fy, ksi 2835) h b, ft)189.43 t f, in 24.1 Ag, in^2 50	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK	14.67 90.12 5*Pc ?	db, Ru< in shi⊡n 3
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips	M' f, in-kip 10719.84 10 20909.27 d b, in 20909.27 Fy, ksi 2835 c d c, in 50) h b, ft)189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1 18	14.67 90.12 ;*Pc ? t cf, in 16	db, Ru< in phiRn? 189 24 MG
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate	7 <mark>OK</mark> M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi	M' f, in-kip 10719.84 10 20909.27 d b, in 20909.27 Fy, ksi 2835 Fy, ksi 50 d c, in) h b, ft)189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 ;*Pc ? t cf, in 16	d b, Ru < in phi Rn ? 1.89 24 <mark>NG</mark>
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required?	7 <mark>OK</mark> M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi	M' f, in-kig 10719.84 10 20909.27 d b, in 20909.27 Fy, ksi 2835 Fy, ksi 50 d c, in	o h b, ft)189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 5*Pc ? t cf, in 16	d b, Ru < in phi Rn ? 1.89 24 <mark>NG</mark>
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required?	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi	M' f, in-kig 10719.84 10 20909.27 d b, in 20909.27 Fy, ksi 2835 Fy, ksi 50 d c, in	o h b, ft)189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 5*Pc ? t cf, in 16	d b, Ru < in phi Rn ? 1.89 24 NG
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Required Minimum Thickness	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi	M' f, in-kig 10719.84 10 20909.27 d b, in 2835 Fy, ksi 2835 d c, in 50 d c, in	o h b, ft)189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 5*Pc ? t cf, in 16	d b, Ru < in phi Rn ? 1.89 24 <mark> NG</mark>
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Required Minimum Thickness of Each Component	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi	M' f, in-kip 10719.84 M' f, in-kip 10 20909.27 d b, in 20909.27 Fy, ksi 2835 Fy, ksi 50 d c, in	o h b, ft)189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 5*Pc ? t cf, in 16	d b, Ru < in phi Rn ? 1.89 24 <mark>NG</mark>
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Required Minimum Thickness of Each Component of the Panel Zone, t, in	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi	M' f, in-kip 10719.84 10 20909.27 d b, in 2835 Fy, ksi 2835 d c, in 50 d c, in	o h b, ft)189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 5*Pc ? t cf, in 16	d b, Ru < in phi Rn ? 1.89 24 <mark>NG</mark>
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Kequired Minimum Thickness of Each Component of the Panel Zone, t, in	OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi d z/90, in	M' f, in-kip 10719.84 M' f, in-kip 20909.27 d b, in 20909.27 Fy, ksi 2835 Fy, ksi 50 d c, in 50 v z/90, in	o h b, ft 1189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 5*Pc ? t cf, in 16	d b, Ru < in phi Rn ? 1.89 24 <mark>NG</mark>
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.32 Doubler Plate Required Minimum Thickness of Each Component of the Panel Zone, t, in 0.391 Thickness of the	V OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi d z/90, in	10719.84 ^{M' f, in-kip 10719.84 ¹⁰ 20909.27 ^{d b, in} 2835 ^{Fy, ksi} 50 ^{d c, in} 50 ^{w z/90, in}}	o h b, ft 1189.43 24.1 Ag, in^2 50 t w, in 16.4	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 5*Pc ? t cf, in 16	db, Ru< in phiRn? 1.89 24 <mark>NG</mark>
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.32 Doubler Plate Required? Required Minimum Thickness of Each Component of the Panel Zone, t, in 0.391 Thickness of the Plate, t p, in	 OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi Fy, ksi Ru, kips 	M' f, in-kip 10719.84 M' f, in-kip 10719.84 10 20909.27 d b, in 2835 Fy, ksi 2835 d c, in 50 d c, in 50 w z/90, in 0.251 Fy, ksi	 h b, ft 1189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4 0.14 d c, in 	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18	14.67 90.12 5*Pc ? t cf, in 16 b cf, in	db, Ru< in phi Rn ? 1.89 24 NG tcf, in db, in
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Required Minimum Thickness of Each Component of the Panel Zone, t, in 0.391 Thickness of the Plate, t p, in 0.025	 OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi Fy, ksi Ru, kips 	M' f, in-kip 10719.84 M' f, in-kip 20909.27 d b, in 2835 Fy, ksi 50 d c, in 50 d c, in 0.251 w z/90, in 806.12 Fy, ksi	 h b, ft 24.1 Ag, in^2 50 t w, in 16.4 0.14 d c, in 50 	h t, ft 24 Vc, kips 0.77 Pr < 0.75 75.6 OK b cf, in 1.18 t w, in 16.4	14.67 90.12 5*Pc ? t cf, in 16 b cf, in 1.18	db, Ru < in phi Rn ? 1.89 24 NG tcf, in db, in 16 1.9 24.1
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 pr 338.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Ninimum Thickness of Each Component of the Panel Zone, t, in 0.391 Thickness of the Plate, t p, in 0.025	 OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi d z/90, in Ru, kips 	10719.84 ^{M' f, in-kir 10719.84 ^{d b, in} 20909.27 ^{d b, in} 2835 ^{Fy, ksi} 50 ^{d c, in} 0.251 ^{w z/90, in 0.251 ^{Fy, ksi} 806.12 ^{Fy, ksi} in thick Da}}	 h b, ft 24.1 Ag, in^2 50 t w, in 16.4 0.14 50 	h t, ft 24 0.77 Pr < 0.75 75.6 OK b cf, in 1.18 t w, in 16.4	14.67 90.12 5*Pc ? 16 t cf, in 16 b cf, in 1.18	db, Ru < in phi Rn ? 1.89 24 NG tcf, in db, in 16 1.9 24.1
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Hequired? Hequired Minimum Thickness of Each Component of the Panel Zone, t, in 0.391 Thickness of the Plate, t p, in 0.025	 OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi d z/90, in Ru, kips 	10719.84 ^{M' f, in-kip 10719.84 ¹⁰ 20909.27 ^d b, in 2835 ^{Fy, ksi} 2835 ^d c, in 50 ^d c, in 0.251 ^w z/90, in 0.251 ^{Fy, ksi} 806.12 ^{Fy, ksi} in thick Do Plate}	 h b, ft 24.1 Ag, in^2 50 t w, in 16.4 0.14 0.14 50 d c, in 50 	h t, ft 24 0.77 Pr < 0.75 75.6 OK b cf, in 1.18 t w, in 16.4	14.67 90.12 5*Pc ? 16 t cf, in 16 b cf, in 1.18	db, Ru < in phi Rn ? 1.89 24 NG tcf, in db, in 16 1.9 24.1
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 Phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Required Minimum Thickness of Each Component of the Panel Zone, t, in 0.391 Thickness of the Plate, t p, in 0.025 Use Use	 OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi a z/90, in Ru, kips 1 in x 1 in 	M ¹ f, in-kip 10719.84 M ¹ f, in-kip 10 20909.27 d b, in 2835 Fy, ksi 2835 d c, in 50 d c, in 50 d c, in 50 ksi 806.12 Fy, ksi in thick Do Plate Clip	 h b, ft 24.1 Ag, in^2 50 t w, in 16.4 0.14 d c, in 50 	h t, ft 24 0.77 Pr < 0.75 75.6 OK b cf, in 1.18 t w, in 16.4	14.67 90.12 5*Pc ? 16 t cf, in 16 b cf, in 1.18	db, Ru < in phi Rn ? 1.89 24 NG tcf, in db, in 16 1.9 24.1
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Required Minimum Thickness of Each Component of the Panel Zone, t, in 0.391 Thickness of the Plate, t p, in 0.025 Use Use Extend the doubler	 OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi d z/90, in Ru, kips 1 in x 1 in 	10719.84 M' f, in-kip 10719.84 d b, in 20909.27 d b, in 2835 Fy, ksi 2835 d c, in 50 d c, in 50 d c, in 50 ksi 806.12 Fy, ksi in thick Do Plate Clip	 h b, ft 189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4 0.14 od c, in 50 	h t, ft 24 0.77 Pr < 0.75 75.6 OK 1.18 b cf, in 1.18	14.67 90.12 5*Pc ? 16 t cf, in 16 b cf, in 1.18	db, Ru < in phi Rn ? 1.89 24 NG tcf, in db, in 16 1.9 24.1
2.27 Panel Zone Check Vc, kips 90.12 Required Strength of the Panel Zone Ru, kips 806.12 Pr < 0.75*Pc Pr, kips 138.642 Phi Rn, or AISC Seismic Manual Table 4-2 799.33 Doubler Plate Required? Required? Required Minimum Thickness of Each Component of the Panel Zone, t, in 0.391 Thickness of the Plate, t p, in 0.025 Use Use Extend the doubler plate 6 in above and below the beams	 OK M f, in-kip sum M f, in-kip 0.75*Pc, kips Fy, ksi a z/90, in Ru, kips 1 in x 1 in 	10719.84 M' f, in-kip 10719.84 10 20909.27 d b, in 2835 Fy, ksi 2835 d c, in 50 d c, in 50 d c, in 50 ksi 806.12 Fy, ksi 806.12 in thick Do Plate Clip	0 h b, ft 0189.43 t f, in 24.1 Ag, in^2 50 t w, in 16.4 0.14 0.14 50 d c, in 50	h t, ft 24 0.77 Pr < 0.75 75.6 OK 1.18 t w, in 16.4	14.67 90.12 5*Pc ? 16 t cf, in 16 b cf, in 1.18	db, Ru < in phi Rn ? 1.89 24 <mark>NG</mark> tcf, in db, in 16 1.9 24.1

3.0 BUILDING ENCLOSURE BREADTH

EXTERIOR TEMPERATURE AND RELATIVE HUMIDITY GRAPH

Figure ## | Exterior Temperature and Relative Humidity in East Coast USA Figure ## | Exterior Temperature and Relative Humidity in East Coast

East Coast, USA San Francisco, CA Material Start End Start End **Gypsum Board** 0.19 3.32 0.19 0.34 **Batt Insulation** 0.00 0.08 0.00 0.02 **Sprayed Polyurethane** 0.02 0.05 0.02 0.04 Foam Air Space 0.03 0.05 0.03 0.04 Bick 0.13 0.13 0.13 0.13

WATER CONTENTS FOR INDIVIDUAL MATERIALS

San Francisco

East Coast, USA

4.0 CONSTRUCTION BREADTH

ECCENTRICALLY BRACED FRAME

						Ma	iterial	Labor		Equipment		Total		Total Incl O&P	
	Description	% of Structure	Unit Quantity	Daily Output	Labor Hours	Cost/Unit	Cost (\$)	Cost/Unit Cost ((\$)	Cost/Unit	Cost (\$)	Cost/Unit	Cost (\$)	Cost/Unit	Cost (\$)
12 23.75	Columns						\$ -	\$	-		\$-		\$-	\$	
	W12X50	65%	L.F 499.	2 1032	0.054	73	\$ 36,441.60	2.81 \$ 1,40	02.75	1.46	\$ 728.83	77.27	\$ 38,573.18	86.5 \$	43,180.80
	W14X120	35%	L.F 268.	3 960	0.058	175	\$ 47,040.00	3.02 \$ 81	11.78	1.57	\$ 422.02	179.59	\$ 48,273.79	199 \$	53,491.20
12 23.75	Beams / Girders						\$ -	\$	-		\$-		\$ -	\$	-
1	W21X50	56%	L.F 3285.5	2 1064	0.075	73	\$ 239,842.96	3.93 \$ 12,91	12.09	1.56	\$ 5,125.41	78.49	\$ 257,880.46	88.5 \$	290,768.52
1	W24X84	⊧ <mark>24%</mark>	L.F 1408.08	3 1080	0.074	122	\$ 171,785.76	3.87 \$ 5,44	19.27	1.53	\$ 2,154.36	127.4	\$ 179,389.39	144 \$	202,763.52
	W30X99	20%	L.F 1173./	4 1200	0.067	144	\$ 168,969.60	3.48 \$ 4,08	33.43	1.38	\$ 1,619.29	148.86	\$ 174,672.32	167 \$	195,957.80
12 23.75	Bracing						\$ -	\$	-		\$ -		\$-	\$	-
	W14X120	100%	L.F 837.	5 720	0.078	175	\$ 146,562.50	4.02 \$ 3,36	56.75	2.1	\$ 1,758.75	181.12	\$ 151,688.00	201 \$	168,337.50
03 30 53.40	Concrete Topping						\$ -	\$	-		\$ -		\$-	\$	-
	Lightweight, 110# per C.F., 2-1/2" thick floor fill	I	S.F 13165	J 2585	0.022	1.46	\$ 192,209.00	0.91 \$119,80	01.50	0.28	\$ 36,862.00	2.65	\$ 348,872.50	3.38 \$	444,977.00
							\$-	\$	-		\$ -		\$ -	\$	-
05 31 13.50	Floor Decking						\$-	\$	-		\$ -		\$ -	\$	-
	3" - 16 ga	1	S.F 13165	J 2700	0.012	3.87	\$ 509,485.50	3.87 \$ 509,48	85.50	0.6	\$ 78,990.00	0.05	\$ 6,582.50	5.45 \$	717,492.50
05 31 23.50	Roof Decking						\$-	\$	-	0.63	\$ -	0.05	\$ -	\$	-
	3" - N - 16 ga - over 500 squares	3	S.F 699	3 3400	0.009	4	\$ 27,972.00	0.5 \$ 3,49	96.50	0.04	\$ 279.72	4.54	\$ 31,748.22	5.35 \$	37,412.55
														Total Ś	2.154.381.39

SPECIAL MOMENT FRAME

						Material		Labor		Equipment		Total		Total In	icl O&P
	Description	% of Structure	nit Quantity	Daily Output	Labor Hours	Cost/Unit	Cost (\$)	Cost/Unit	Cost (\$)	Cost/Unit	Cost (\$)	Cost/Unit	Cost (\$)	Cost/Unit	Cost (\$)
12 23.75	Columns						÷ -		\$-		\$ -		\$ -	\$	-
	W12X5	0 65% L.I	F 499.2	1032	0.054	73 5	36,441.60	2.81	\$ 1,402.75	1.46	\$ 728.83	77.27	\$ 38,573.18	86.5 \$	43,180.80
	W14X12	0 35% L.I	F 268.8	960	0.058	175 \$	47,040.00	3.02	\$ 811.78	1.57	\$ 422.02	179.59	\$ 48,273.79	199 \$	53,491.20
12 23.75	Beams / Girders						- 6		\$-		\$ -		\$ -	\$	-
	W21X5	0 56% L.I	F 3285.52	1064	0.075	73 5	239,842.96	3.93	\$ 12,912.09	1.56	\$ 5,125.41	78.49	\$ 257,880.46	88.5 \$	290,768.52
	W24X8	4 24% L.I	F 1408.08	1080	0.074	122 \$	171,785.76	3.87	\$ 5,449.27	1.53	\$ 2,154.36	127.4	\$ 179,389.39	144 \$	202,763.52
	W30X9	9 20% L.I	F 1173.4	1200	0.067	144 \$	168,969.60	3.48	\$ 4,083.43	1.38	\$ 1,619.29	148.86	\$ 174,672.32	167 \$	195,957.80
	W14X12	0 100% L.I	F 837.5	720	0.078	175 \$	\$ 146,562.50	4.02	\$ 3,366.75	2.1	\$ 1,758.75	181.12	\$ 151,688.00	201 \$	168,337.50
03 30 53.40	Concrete Shear Wall - Elevator tower						-		\$ -		\$ -		\$ -	\$	-
	12" thic	с.	Y. 96.5	40	5	154 \$	5 14,861.00	234	\$ 22,581.00	18.8	\$ 1,814.20	406.8	\$ 39,256.20	570 \$	55,005.00
03 30 53.40	Concrete Shear Wal - Stair tower						-		\$ -		\$ -		\$ -	\$	-
	12" thic	с.	Y. 137.5	40	5	154 \$	\$ 21,175.00	234	\$ 32,175.00	18.8	\$ 2,585.00	406.8	\$ 55,935.00	570 \$	78,375.00
03 30 53.40	Concrete Topping						-		\$ -		\$ -		\$ -	\$	-
	Lightweight, 110# per C.F., 2-1/2" thick floor fi	I S.	F 131650	2585	0.022	1.46	\$ 192,209.00	0.91	\$ 119,801.50	0.28	\$ 36,862.00	2.65	\$ 348,872.50	3.38 \$	444,977.00
							-		\$ -		\$ -		\$ -	\$	-
05 31 13.50	Floor Decking						-		\$ -		\$ -		\$ -	\$	-
	3" - 16 g	a S.	F 131650	2700	0.012	3.87	509,485.50	3.87	\$ 509,485.50	0.6	\$ 78,990.00	0.05	\$ 6,582.50	5.45 \$	717,492.50
05 31 23.50	Roof Decking						÷ -		\$ -	0.63	ş -	0.05	\$ -	\$	-
	3" - N - 16 ga - over 500 square	s S.	F 6993	3400	0.009	4 9	\$ 27,972.00	0.5	\$ 3,496.50	0.04	\$ 279.72	4.54	\$ 31,748.22	5.35 \$	37,412.55
														Total Ś	2 287 761 39

PROJECT DURATION CALCULATION

						Material		Labor		Equipment		Total		Total Incl O&P	
	Description	% of Structure	Unit Quantity	Daily Output	Labor Hours	Cost/ Unit	Cost (\$)	Cost/U nit	Cost (\$)	Cost/U nit	Cost (\$)	Cost/ Unit	Cost (\$)	Cost/ Unit	Cost (\$)
12 23.75	Columns					\$		\$	-	\$	-	\$	÷ -	\$	-
	W12X50	65% L	.F 499.	2 1032	0.054	73 \$	36,441.60	2.81 \$	1,402.75	1.46 \$	728.83	77.27 \$	38,573.18	86.5 \$	43,180.80
	W14X120	35% L	.F 268.	960	0.058	175 \$	47,040.00	3.02 \$	811.78	1.57 \$	422.02	179.6 \$	48,273.79	199 \$	53,491.20
12 23.75	Beams / Girders					\$	-	\$	-	\$	-	Ş	-	\$	-
	W21X50	56% L	.F 3285.5	2 1064	0.075	73 \$	239,842.96	3.93 \$	12,912.09	1.56 \$	5,125.41	78.49 \$	257,880.46	88.5 \$	290,768.52
	W24X84	24% L	F 1408.0	3 1080	0.074	122 \$	171,785.76	3.87 \$	5,449.27	1.53 \$	2,154.36	127.4 \$	179,389.39	144 \$	202,763.52
	W30X99	20% L	.F 1173.	1200	0.067	144 Ş	168,969.60	3.48 \$	4,083.43	1.38 \$	1,619.29	148.9 \$	174,672.32	167 \$	195,957.80
03 30 53.40	Concrete Shear Wall - Elevator tower					\$	-	\$	-	\$	-	\$	-	\$	-
	12" thick	C	C.Y. 96.	5 40	5	154 \$	14,861.00	234 \$	22,581.00	18.8 \$	1,814.20	406.8	39,256.20	570 \$	55,005.00
03 30 53.40	Concrete Shear Wal - Stair tower					Ş	-	Ş	-	Ş	-	5	-	\$	-
	12" thick	C	C.Y. 137.	5 40	5	154 \$	21,175.00	234 \$	32,175.00	18.8 \$	2,585.00	406.8	55,935.00	570 \$	78,375.00
03 30 53.40	Concrete Topping					Ş	-	Ş	-	Ş	-	5	-	\$	-
Lightwe	light, 110# per C.F., 2-1/2" thick floor fill	S	5.F 13165	2585	0.022	1.46 Ş	192,209.00	0.91 Ş	119,801.50	0.28 \$	36,862.00	2.65 \$	348,872.50	3.38 \$	444,977.00
						Ş	-	Ş	-	Ş	-	5	-	Ş	-
05 31 13.50	Floor Decking					Ş	-	Ş		Ş			-	Ş	
	3" - 16 ga	5	s.⊢ 13165	2/00	0.012	3.87 \$	509,485.50	3.87 \$	509,485.50	0.6 \$	78,990.00	0.05 \$	6,582.50	5.45 \$	/1/,492.50
05 31 23.50	Root Decking				0.000	\$	-	\$ 0.5 ¢	-	0.63 \$	-	0.05 \$		5 05 Å	-
	3" - N - 16 ga - over 500 squares	5	s.⊧ 699.	3400	0.009	4 Ş	27,972.00	0.5 Ş	3,496.50	U.04 Ş	2/9./2	4.54 \$	5 31,/48.22	5.35 Ş	37,412.55
														Total \$	2,119,423.89